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In these notes I do not discuss EM in depth with proofs and guarantees, but I go step
by step over the derivation of the M-step for models such as IBM 1 and 2.

1 Notation

Let F be a random variable over French sentences and f = fm1 = 〈f1 . . . fm〉 an assignment
of this random variable. Similarly, let E be a random variable over English sentences, and
e = el1 and assignment. Finally, let A be a random variable over alignments, where an
alignment is bijection that maps from [1 . . .m] to [0 . . . l] where we extend every English
sentence to contain a Null token occupying the 0th position.

2 IBM model 1

Equation 1 specifies IBM model 1(Brown et al., 1993). Assumptions: 1) alignments are
independent of one another; 2) the distribution over possible alignments is uniform. The
lexical distribution t is parameterised as a collection of categorical distributions. That is,
let t(d|c) = θc,d where c ∈ VE ∪{Null} is a word in the English vocabulary (or Null) and
d ∈ VF is a word in the French vocabulary, then

∑
d θd,c = 1.1

P (F = f |E = e) =
∑
a

P (f, a|e)

∝
∑
a

m∏
j=1

t(fj |eaj ) (1)

In order to derive MLE estimates for IBM1, let us pretend for a moment that we
observe a single sentence pair. Then Equation 2 states the maximum likelihood objective,
a constrained optimisation.

1We use c and d as in context and decision, respectively.
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θMLE = arg max
Θ

∑
a

m∏
j=1

t(fj |eaj ) (2)

s.t. ∀c,
∑
d

θc,d = 1

We can approach the optimisation problem in Equation 2 as an unconstrained optimisa-
tion by introducing a collection of Lagrangian multipliers (one per categorical distribution).
Thus, let λc for c ∈ VE ∪ {Null} be a Lagrangian multiplier.

h(θ, λ) =
∑
a

m∏
j=1

t(fj |eaj )−
∑
c

λc

(∑
d

θc,d − 1

)
(3)

We can now take derivatives of Equation 3 with respect to some θc,d and λc and set
those to zero.

Let us start with the likelihood term.

∂h(θ, λ)

∂θc,d
=
∑
a

∂

∂θc,d
P (f, a|e) (4)

=
∑
a

P (f, a|e)
m∑
j=1

∂

∂θc,d
log t(fj |eaj ) (5)

=
∑
a

P (f, a|e)
m∑
j=1

1

θc,d
δ(c, eaj )δ(d, fj) (6)

=
1

θc,d

∑
a

P (f, a|e)
m∑
j=1

δ(c, eaj )δ(d, fj) (7)

=
1

θc,d

∑
a

P (f, a|e)na(c, d) (8)

=
1

θc,d

∑
a

P (f |e)P (a|f, e)na(c, d) (9)

=
P (f |e)
θc,d

∑
a

P (a|f, e)na(c, d) (10)

=
P (f |e)
θc,d

〈na(c, d)〉P (a|f,e) (11)

In Equation 4, we push the derivative through the sum due to linearity, but stop at
P (f, a|e) which involves derivatives of products. To deal with the product, in Equation 5
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we make use of the log-identity for derivatives, i.e d
dx log f(x) = 1

f(x)
d

dxf(x), thus d
dxf(x) =

f(x) d
dx log f(x). Again due to linearity, the derivative goes through the sum and stops

at the log. In Equation 6, we take the derivative of the log with respect to θc,d, which
will be non-zero only when eaj matches the context c and fj matches the decision d – to
express this fact we introduce δ(a, b) which is 1 when a = b and 0 otherwise. In Equation
7 we just rearrange the terms making it explicit that θc,d does not depend on a or j.
In Equation 8 we introduce a function na(c, d) =

∑m
j=1 δ(c, eaj )δ(d, fj) which counts the

number of times c, d participates in a. Equation 9 follows by application of the chain rule
of probabilities. And Equation 10 shows that P (f |e) is not a function of a, in fact, it
results from marginalisation over all possible alignment configurations. This last result
is really handy as it leaves us with a sum over P (a|f, e)na(c, d) where P (a|f, e) is the
posterior probability over alignments and the sum is in fact an expectation. Equation 11
shows the most important result of this block of identities, namely, that the derivative is
proportional to the expected number of occurrences of c, d under the posterior distribution
over alignment configurations.

Now let us turn to the Lagrangian term. Its derivative with respect to a fixed θc,d is
shown in Equation 15.

∂

∂θc,d
h(θ, λ) =

∂

∂θc,d

∑
c′

λc′
∑
d′

t(d′|c′)− 1 (12)

=
∑
c′

λc′
∑
d′

∂

∂θc,d
t(d′|c′)− 0 (13)

=
∑
c′

λc′
∑
d′

δ(c, c′)δ(d, d′) (14)

= λc (15)

Now we put together Equation 11 (derivative of the likelihood term) and Equation 15
(derivative of the Lagrangian term), and make ∂

∂θc,d
h(θ, λ) = 0.

0 =
∂

∂θc,d
h(θ, λ) (16)

0 =
P (f |e)
θc,d

〈na(c, d)〉P (a|f,e) − λc (17)

λc =
P (f |e)
θc,d

〈na(c, d)〉P (a|f,e) (18)

θc,d =
P (f |e)
λc

〈na(c, d)〉P (a|f,e) (19)

Now recall the constraint
∑

d θc,d = 1 which can also be derived by taking ∂
∂λc

h(θ, λ) =
0.
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1 =
∑
d

θc,d (20)

=
∑
d

P (f |e)
λc

〈na(c, d)〉P (a|f,e) (21)

=
P (f |e)
λc

∑
d

〈na(c, d)〉P (a|f,e) (22)

=
P (f |e)
λc

〈∑
d

na(c, d)

〉
P (a|f,e)

(23)

λc = P (f |e) 〈na(c)〉P (a|f,e) (24)

In Equation 21, we substitute θc,d by the result in Equation 19. We factor P (f |e)
λc

out of
the sum since it does not depend on d. Then, we push the sum through the expectation due
to linearity. Finally, we define na(c) ,

∑
d na(c, d) as the number of times c participates

in a. The result in Equation 24 can be combined with Equation 19 to yield the final result
shown in Equation 25 (note that the terms P (f |e) cancel out).

θc,d =
〈na(c, d)〉P (a|f,e)

〈na(c)〉P (a|f,e)
(25)

Obviously this is not a closed form solution as θc,d appears on both sides of the equation
– recall that P (a|f, e) depends parameters θ. But this suggests an iterative solution which
is in fact the EM algorithm.
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