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Abstract

This note describes a Bayesian formulation of IBM model 1 with a
Dirichlet prior on the translation parameters. A variational inference
algorithm for this model is derived. Basic familiarity with IBM model
1 is assumed.

1 IBM Model 1

IBM model 1 is a joint model of m French words and their corresponding
alignment links given an English sentence consisting of l+1 words.1 The En-
glish sentence has a 0th position which contains a hypothetical NULL word.
Since we aim at a Bayesian formulation of the model, we also condition on a
parameter vector θ (which in the case of IBM1 contains only the translation
parameters). The joint probability of a French sentence plus alignment is

P (fm1 , a
m
1 |e0,

l , θ) = P (m|l)
m∏
j=1

P (aj)P (fj |eaj , θ) (1)

∝
m∏
j=1

P (aj)P (fj |eaj , θ) . (2)

Observe that line (1) expresses a set of independence assumptions, namely
that the French words are conditionally independent given their alignment
links and that the alignment links are independent of all other variables.
Line (2) further expresses the assumption that the probability for the French
sentence length is uniform over some appropriately chosen support.2 Recall
that IBM1 also assumes that P (aj) is uniform for all j ∈ {1, 2, . . . ,m}.

We now rewrite line (2) as a product over English and French word types.
This will facilitate the derivation of a variational inference algorithm later

1The model and algorithm are presented on the sentence level. Since we standardly
assume independence between sentence pairs, the extension to the corpus level is trivial.
The names English and French are used genererically and can be replaced by any other
two languages.

2This assumption is shared by all IBM models.
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on.

P (fm1 , a
m
1 |e0,

l , θ) ∝ P (am1 )
∏
e

∏
f

P (fj |eaf )
∑m
j=1 1e(eaj )1f (fj) (3)

= P (am1 )
∏
e

∏
f

θ

∑m
j=1 1e(eaj )1f (fj)

f |e (4)

Here we have used the indicator function

1x(y) =

{
1 if x = y

0 otherwise .
(5)

Thus, in Equation (4) we simply count the number of times that two word
types e and f have been aligned and use that count in the exponent of
the conditional categorical distribution associated with e. This gives us the
same probability model as Equation (2).

2 A Dirichlet Prior for the Translation Parame-
ters

Since the translation parameters are the only parameters of IBM1, they are
also the only ones for which we need to find a prior if we want to build a
Bayesian model. The “natural” choice of prior for these categorical parame-
ters is the Dirichlet distribution as it is conjugate to the categorical. Conju-
gacy means (in this case) that the posterior distribution over parameters will
again be a Dirichlet distribution. A K-dimensional Dirichlet distribution is
a continous distribution over the probability simplex3 in RK and hence has
a probability density function (pdf). Notionally, I distinguish pdfs (p) from
probbability mass function (pmfs; P ). Thus the type of probability func-
tion is always apparent from the formula. The density of the K-dimensional
Dirichlet with parameter vector α is

p(θ|α) =
Γ
(∑K

k=1 αk

)
∏K
k=1 Γ(αk)︸ ︷︷ ︸

normalisation constant

K∏
k=1

θαk−1
k . (6)

In the above, Γ(·) is the Gamma function, also known as generalized facto-
rial function. Denoting the French vocabulary size by VF , we know that we
need a VF -dimensional Dirichlet prior for our Bayesian IBM1 model. The
joint distribution of alignment links, French words and translation param-
eters given the English sentence and the Dirichlet parameter vector α is

3The probability simples is the set of all positive vectors in RK with norm 1.
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given below. Notice that because the parameters are continuous, this joint
distribution is also continuous.

p(am1 , f
m
1 , θ|el0, α) = P (am1 )

∏
e

p(θe|α)
∏
f

P (fj |eaf )
∑m
j=1 1e(eaj )1f (fj) (7)

Observe that this Bayesian formulation is not much different from Equa-
tion (3), except that we now have distributions over the categorical parame-
ters. Next, we replace the terms p(θe|α) and P (fj |eaf ) with their expansions
from Equations (6) and (4). This gives us the functional form of the joint
distribution.

p(am1 , f
m
1 , θ|el0, α) = P (am1 )

∏
e

Γ
(∑

f αf

)
∏
f Γ(αF )

∏
f

θ
αf−1
f |e

∏
f

θ
∑m
j=1 1e(eaj )1f (fj)

f |e (8)

= P (am1 )
∏
e

Γ
(∑

f αf

)
∏
f Γ(αF )

∏
f

θ
αf−1+

∑m
j=1 1e(eaj )1f (fj)

f |e (9)

∝ P (am1 )
∏
e

∏
f

θ
αf−1+

∑m
j=1 1e(eaj )1f (fj)

f |e (10)

The expression in line (10) is satisfyingly compact and intuitively easy to
understand. The prior parameters effectively act as a priori known alignment
links between the English and French types. The reason we were allowed
to drop the rather nasty-looking normalisation constant of the Dirichlet
distribution is that it is a constant with respect to the probability of the
alignment links, French words and parameters.

Equation (10) also has important implications for the computation of the
posterior over the categorical parameters. From the definition of conditional
probability we know that

p(θ|el0, fm1 , am1 , α) ∝ p(θ, fm1 , am1 |el0, α) . (11)

Thus the posterior is proportional to line (10). Now observe that the last
product in that line has almost the same form as the Dirichlet distribution
in Equation (6). The only thing that is missing to make it a proper Dirichlet
Distribtion is the normalisation constant. That the Drichlet is unnormalised
does not come as a surprise since Equation (11) tells us exactly that we have
computed an unnormalized posterior! In order to normalize the posterior
we need to fill in the correct normalisation constant which can be done
easily if we know the Dirichlet parameter of the posterior. Taking another
look at Equation (6), we realise that the f th dimension of the posterior
Dirichlet parameter vector is equal to αf +

∑m
j=1 1e(eaj )1f (fj). Thus the

normalisation constant for the Dirichlet posterior associated with English
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type e is

Γ
(∑

f αf +
∑m

j=1 1e(eaj )1f (fj)
)

∏
f Γ(αf +

∑m
j=1 1e(eaj )1f (fj))

. (12)

Finally, notice that to get the actual posterior we would need another con-
stant related to the term P (aj). Since this term is a constant and does not
influence posterior inference, we will neglect it though. Before we show how
to do posterior inference for the Bayesian IBM model 1, we do a quick recap
of exponential family distributions.

3 The Exponential Family

First off, there is not one exponential family but several (one for each distri-
bution that can be written as an exponential family). What’s special about
exponential family distributions is that their density (up to a constant) is
fully determined by their parameters and sufficient statistics. This means
that during inference, we only need to collect the sufficient statistics from
the data and can ignore all other information that the data may contain.
An exponential family distribution with canonical parameter vector θ and
sufficient statistics t(x) is any distribution whose density can be written as

p(x|θ) = h(x) exp
(
η(θ)>t(x)− a(θ)

)
(13)

where

• h(x) is a base measure that only depends on the data x

• t(x) is the vector of sufficient statistics4

• η(θ) is a vector of natural parameters

• a(θ) = log
(∫
h(x) exp

(
η(θ)>t(x)

)
dθ
)

is the log-normaliser that only
depends on the parameters.

When we are dealing with pmfs instead of pdfs, the integral is turned into
a sum.

The exponential familiy forms of the categorical and Dirichlet distribu-
tions are given below.5 They should be derived as an exercise. Notice that

4If you do not know what sufficient statistics are, consult chapter 5.5 of Schulz and
Schaffner (2016).

5Readers familiar with exponential family distributions may remark that the formula-
tions below are not actual exponential families since the categorical parameters are not
identifiable. While I acknowledge that they are correct, we ignore the issue of identifiability
here as it does not affect the inference algorithm.
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in both cases h(x) = 1. We use the count function c(·) which maps a data
vector to a vector of counts of unique outcomes.

P (x|θ) = exp
(

log(θ)>c(x)
)

(14)

p(θ|α) = exp

(
(α− 1)> log(θ)−

{
K∑
k=1

log (Γ(αk))− log

(
Γ

(
K∑
k=1

αk

))})
(15)

Observe that the sufficient staticistics of the Dirichlet and the natural
parameters of the the categorical are identical. Thus, when we multiply
both distributions we end up with an unnormalized distribution with suffi-
cient statistics log(θ) and natural parameters α+ c(x) which is exactly the
posterior parameter that we found in Section 2.

A further advantage of exponential family distributions is that their ex-
pected sufficient statistics are really easy to compute. In particular, the
following equivalence holds:

E [t(x)] =
d

dη(θ)
a(η(θ)) (16)

We do not prove the equivalence here, but if you are able to differentiate
Equation (13) you can easily prove it yourself. For the Dirichlet distribution
this equivalence lets us compute the expected sufficient statistics as

E [log(θk)] =
∂

∂αk
a(α) (17)

=
∂

∂αk

K∑
k=1

log (Γ(αk))−
∂

∂αk
log

(
Γ

(
K∑
k=1

αk

))
(18)

= Ψ(αk)−Ψ

(
K∑
k=1

αk

)
(19)

where Ψ(·) = Γ′(·)
Γ(·) is the digamma function (which is the first derivative of

the log-gamma function).

4 Variational Inference for the Bayesian IBM1

4.1 General Variational Inference

We are now in a position to develop a variational inference algorithm for
the Bayesian IBM1. Let us first recall the logic of variational inference:
in sufficiently complex models, we cannot compute the posterior because
we cannot compute its normalisation constant p(x) =

∫
p(x, θ)dθ. Thus,

instead of directly computing the posterior p(θ|x) we decide to approximate
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it with a simpler distribution q(θ|λ) (which in principle may also depend
on x). We measure the divergence of q from p with Kullback-Leibler (KL)
divergence (also known as relative entropy). Small KL divergence means
that q closely approximates p. As a recap, we give the KL formula here.

KL (q||p) =

∫
q(θ|λ) log

(
q(θ|λ)

p(θ|x)

)
dθ = Eq

[
log

(
q(θ|λ)

p(θ|x)

)]
(20)

In order to find a q that is as close as possible to p, we seek to minimise
this KL divergence. In practice, however, we maximise the negative KL di-
vergence. This obviously does not affect the q that we find but is motivated
by the fact that it allows us to compute a lower bound on the log marginal
likelihood of the data Note that the marginal likelihood is also called evi-
dence. For this reason, the bound on the evidence is referred to as evidence
lower bound (ELBO).

−KL (q||p) =

∫
q(θ|λ) log

(
p(θ|x)

q(θ|λ)

)
dθ (21)

= Eq [log(p(θ, x))− log(q(θ|λ))]− log(p(x)) (22)

= Eq [log(p(θ, x))] + H (q)︸ ︷︷ ︸
ELBO

− log(p(x)) (23)

From the above it can easily be seen that the ELBO is indeed a lower
bound. The gap between the ELBO and the log-evidence is exactly the
KL divergence between the approximate posterior q(θ|λ) and the model
posterior p(θ|x). The ELBO contains all the terms from the KL divergence
that depend on the variational distribution. Thus it suffices to optimise only
the ELBO in order to optimise the KL divergence! The ELBO will from here
on serve as our objective.

4.2 The Case of IBM1

In the case of Bayesian IBM1, the situation is a bit more complicated as
we have two sets of latent variables, namely the alignment links aj and the
translation parameters θe. We thus need two kinds of variational distri-
butions q(aj |φj) and q(θe|λe). Since we want to minimize the KL to the
model posterior, it seems wise to choose variational distributions that are
in the same parametric family as that posterior. Since P (aj |el0, fm1 , θ, α)
is categorical and p(θe|el0, fm1 , am1 , α) is Dirichlet, so are their correspond-
ing variational distributions. Notice further that each alignment link and
each translation distribution have their own variational distributions. This
means that under the variational approximation, all alignment links and
all translation distributions are completely independent of other variables.
This independence assumption is known as mean field assumption. It is a
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rather harsh assumption, however, it makes inference easy and is therefore
widly used. It can be formally expressed as

q(θ, am1 |φ, λ) = q(am1 |φ)q(θ|λ) =
∏
e

q(θe|λe)
m∏
j=1

q(aj |φe) . (24)

We can now fomrulate the ELBO for the Bayesian IBM model 1. All ex-
pectations are taken with respect to the joint variational distribution from
Equation (24).

ELBO(φ, λ) =

m∑
j=1

Eq

log(

constant︷ ︸︸ ︷
P (aj) P (fj |eaj , θ))− q(aj |φ)


+
∑
e

Eq [log(p(θe|α))− q(θe|λe)]
(25)

Recall that IBM1 assumes P (aj) to be constant and thus independent
of the variational parameters. We can hence drop it during optimisation.
In order to optimise (read: maximise) the ELBO, we need to take par-
tial derivatives with respect to each variational distribution and set these
derivatives to 0.6 The fact that we are taking derivatives with respect to
distributions is what gives variational inference its name: the calculus of
variations operates on functionals instead of points. A functional is a func-
tion that take another function as an argument (alternatively you could
view it as a function on a space whose points are in turn functions). In
our case, the ELBO is the functional and the variational distributions are
its arguments. The ELBO is the functional we want to optimise. Let us
start by optimising with respect to q(aj |φj). We write Eqλ [·] to denote an
expectation only with respect to q(θ|λ).

∂

∂q(ak|φk)
ELBO(φ, λ) =

∂

∂q(ak|φk)

m∑
j=1

Eq
[
log(P (fj |eaj , θ)− log(q(aj |φ))

]
+

∂

∂q(ak|φk)
∑
e

Eq [log(p(θe|α))− log(q(θe|λe))]

(26)

= Eqλ [log(P (fk|eak , θ))− log(q(ak|φk)) + C] (27)

= Eqλ
[
log
(
θf |eak

)]
− log(q(ak|φk)) + C (28)

The constant C absorbs the Dirichlet normaliser (see Equation (6)) and
other numeric constants incurred during differentiation.

6Usually, we would also like to verify the concavity of our objective. However, since we
are optimising the KL divergence we are guaranteed to find a local maximum. See Neal
and Hinton (1999) for a proof.
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At this point it is important to realise that the remaining expectation
in line (28) is exactly the expected sufficient statistics of the variational
Dirichlet distribution. Equation (19) shows us how to compute this term.
Setting Equation (28) to 0, we conclude that the update that maximises the
ELBO with respect to φk is

q(ak|φk) ∝ exp

Ψ
(
λfk|eak

)
−Ψ

∑
f

λf |eak

 . (29)

The nessecary normalisation constant can be computed by summing over
all possible values for ak which are the English positions: {0, 1, . . . , l}. The
final update equation is given below.

q(ak|φk) =
exp

(
Ψ
(
λfk|eak

)
−Ψ

(∑
f λf |eak

))
∑l

i=0 exp
(

Ψ
(
λfk|eai

)
−Ψ

(∑
f λf |eai

)) (30)

4.3 Connection to EM

Notice the parallel to the EM algorithm for the IBM models: there we used
the model posterior over alignment links to compute the expected sufficient
statistics in the E-step. In variational inference we do exactly the same when
optimizing the φ parameters. The only difference is that we now compute
the expected sufficient statistics under the variational approximation instead
of the model posterior.

The analogy extends to the update of the variational Dirichlet distribu-
tions q(θ|λ): These are updated in alternation with the update from Equa-
tion (30). Since they are distributions over parameters we can interpret their
update as an M-step. Let me stress, though, that in Bayesian statistics the
distinction between parameters and latent variables does not exist (parame-
ters are just latent variables themselves) and the M-step analogy should not
be taken too seriously.

4.4 Optimising the Dirichlet Parameters

In order to compute the updates for the variational Dirichlet parameters,
we need to differentiate the ELBO with respect to the variational Dirichlet
distribution, equate the result to 0 and solve for q(θ|λ). This is the same
reasoning that we already employed for the updates of q(aj |φj). We use
Eqφ [·] to denote expectations taken only with respect to q(am1 |φ). To make
our lifes easier, we will also reformulate the model distributions in the ELBO
(the p distributions) in the same style as in Section 2. The ELBO is then
written as a sum over the English and French vocabularies. The constant
for the (uniform) alignment probabilities is ommited as it does not depend
on any of the variational parameters.
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∂

∂q(θ|λk)
ELBO(φ, λ) =

∂

∂q(θ|λk)

{∑
e

Eq [p(θe|αe)− q(θe|λe)]

+
∑
f

Eq

log(p(f |θe))
m∑
j=1

1e(eaj )1f (fj)− log(q(aj |φj))


(31)

=
∂

∂q(θ|λk)

∑
e

∑
f

Eq
[
log(θf |e)(αf − 1)− q(θe|λe)

+ log
(
θf |e

) m∑
j=1

1e(eaj )1f (fj)− log(q(aj |φj))

 (32)

=
∂

∂q(θ|λk)

∑
e

∑
f

Eq

log(θf |e)

αf − 1 +

m∑
j=1

1e(eaj )1f (fj)


− log(q(θe|λe))−

m∑
j=1

log(q(aj |φj))

 (33)

=
∑
f

Eqφ

log(θf |k)

αf − 1 +

m∑
j=1

1k(eaj )1f (fj)

− log(q(θk|λk)) + C

 (34)

=
∑
f

log(θf |k)

αf − 1 +

m∑
j=1

Eqφ
[
1k(eaj )

]
1f (fj)

− log(q(θk|λk)) + C (35)

Observe that we have again exploited conjugacy, just as in Section 2.7

Through setting the above derivative to 0 and solving for q(θk|λk) we find
that

q(θk|λk) ∝ exp

∑
f

log(θf |k)

αf − 1 +
m∑
j=1

Eqφ
[
1k(eaj )

]
1f (fj)

 (36)

which we again recognise as an unnormalised Dirichlet distribution. Since
for the Dirichlet the normalisation constant can directly be computed given
the vector of natural parameters, this update is often written only in term
of those natural parameters.

λf |k = αf +
m∑
j=1

Eqφ
[
1k(eaj )

]
1f (fj) (37)

Thus, the variational Dirichlet parameters for English word k are simply the
sum of the model’s Dirichlet parameters and the expected sufficient statistics

7In fact, we have repeated the computation of the Dirichlet posterior inside the com-
putation of the derivative. I hope that this redundancy helps the reader’s understanding.
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of the conditional categorical distribution associated with k. The expected
sufficient statistics are the expected number of times that k is aligned to
each French word. The expectation is taken with respect to the variational
distribtion over alignment links q(am1 |φ).

5 Summary

We have shown how to compute a posterior Dirichlet distribution for a
Dirichlet-Categorical model (IBM1). We have further shown how to derive
a variational inference algorithm for that model. While the derivation is
somewhat involved, the resulting update equations are pleasingly simple.
The implementation of the corresponding algorithm can be done analogously
to the EM algorithm (and in fact only requires the modification of a couple
of lines of code if the EM algorithm is already in place). For the reader’s
convenience, the update equations are repeated below.

q(ak|φk) =
exp

(
Ψ
(
λfk|eak

)
−Ψ

(∑VF
f=1 λf |eak

))
∑l

i=0 exp
(

Ψ
(
λfk|eai

)
−Ψ

(∑VF
f=1 λf |eai

)) (38)

λf |k = αf +
m∑
j=1

Eqφ
[
1k(eaj )1f (fj)

]
(39)
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