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Abstract

This is a tutorial on the IBM models 1 and 2 for word alignment.
In contrast to many other presentations, I motivate the models from
a mixture model rather than from a translation perspective. This
view makes it easier to derive the EM algorithms for learning and
to understand why the likelihood function of the models usually has
multiple optima.

1 Introduction

The IBM models for word alignment were introduced in Brown et al. (1993).
They were originally designed to handle the translation task. However, after
the advent of phrase-based machine translation models (Och and Ney, 2004;
Koehn et al., 2003), they are now solely used for word alignment.

There are 5 IBM models. The first two are tractable, meaning that
the inference tasks necessary for learning can be performed exactly in a
reasonable (polynomial) amount of time. Inference in IBM models 3 to 5
is intractable and can therefore not be performed exactly. Moreover, IBM
models 3 and 4 are deficient in the sense that they assign positive probability
to events that are known to be impossible in naturally observed data. In
statistical terms, these models are mis-specified. Here, we only present IBM
models 1 and 2.

The general problem that the IBM models try to solve is to account for
a collection of sentence-aligned text, known as a parallel corpus. Such a
corpus is a collection of sentence pairs from two languages. The sentences
that form a pair are known to be translations of each other. In line with the
presentation in Brown et al. (1993), I will generically call the two languages
in the corpus English and French.

To formalize the problem, we introduce random variables (RVs) E and
F over the English and French vocabulary. There are in fact several such
RVs, one for each word position in the corpus. We also assume that the
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sth English sentence contains sl word positions and its French translation
contains sm word positions. Under the assumption that all sentence pairs are
independent, a probabilistic model of a parallel corpus C with |C| sentence
pairs can then generally be formulated as

P (C) =

|C|∏
s=1

P (esl1 , f
sm
1 ) . (1)

I will use the notation el1 throughout to denote a vector of outcomes
(e1, . . . , el). Furthermore, since the sentence pairs within C are generally
assumed independent, I will limit the following exposition to one sentence
pair only for the sake of clarity. In doing so, I will drop the index s for the
sentence pair. Hence, the sentences are simply of lengths l and m.

The IBM models decompose the joint probability of a sentence pair ac-
cording to the chain rule.

P (el1, f
m
1 ) =

language model︷ ︸︸ ︷
P (el1) × P (fm1 |el1)︸ ︷︷ ︸

translation model

(2)

The first factor in Equation (2) is called a language model as it models the
monolingual probability of the English sentence. There are various language
models available such as ngram models (Chen and Goodman, 1999), log-
linear models (Rosenfeld, 1996) and neural network models (Bengio et al.,
2003; Mikolov et al., 2010) to only name a few. In our presentation of the
IBM models, we will stay agnostic as to what kind of language model we
use. Any probabilistic language model will do. Our main focus is going to
be on the second factor of Equation (2) which is the translation model.

The translation model assigns a probability to French sentences given an
English sentence. The crucial observation of Brown et al. (1993) was that
each French word will usually be translated into exactly one word in English.
Of course, there are many counterexamples to this. However, assuming that
each French word is generated from only one English word allows us to
formulate a very local generative process. If we add in the assumption that
all French words are conditionally independent (given the English sentence),
we arrive at surprisingly simple graphical models. The models are so simple
in fact that inference can be done exactly in them. This property turns out
to be extremely helpful when learning the parameters of IBM models 1 and
2.

Before I describe these models and derive their learning algorithm, we
quickly review mixture models. As it turns out, IBM models 1 and 2 are
just slightly awkward contstrained mixture models.
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Figure 1: Graphical depiction of a general mixture model where the mixture
components are assumed conditionally independent.

2 Mixture Models

A mixture model consists of k mixture components, each of which defines
a distribution over the data space X which is the same for all components.
The mixture model also defines a distribution over components. Since each
component can potentially specialize its distribution on a subset of the data
space, a mixture model can provide a tighter fit to the data than a single
mixture component alone. The probability that a mixture model with k
components assigns to n i.i.d. data point is

P (xn1 ) =
n∏

i=1

k∑
j=1

P (xi, yi = j) =
n∏

i=1

k∑
j=1

P (yi = j)P (xi|yi = j) . (3)

where we have introduced a set of random variables Yi which range over the
k mixture components.

It is common to interpret mixture models as missing data models. Con-
cretely, we assume our data actually consists of pairs (x, y) where x is always
observed and y is always missing. The inference task is then to infer a dis-
tribution over possible yi for each xi.

Non-identifiability It is well known that different parameter settings in
a mixture model can lead to the same probability distribution. This is often
called the labelling problem in machine learning. In statistics we say that
the model is not identifiable. A model is said to be identifiable if each
parameter setting gives rise to a different probability distribution. This is
not the case for mixture models. Let us quickly illustrate why.

We assume a mixture model with two components c1, c2 which is used
to model data from X = {a, b}. We further set the distribution over com-
ponents to P (c1) = P (c2) = 0.5. Let us assume that P (a|c1) = 0.2 and
P (b|c1) = 0.8. Let us also assume that P (a|c2) = 0.7 and P (b|c2) = 0.3. It
is then easy to see that no matter what our observed data actually looks
like, we will assign it the same probability when using the component distri-
butions just described or when we simply exchange them. By that I mean
that we use component distributions P (a|c1) = 0.7 and P (b|c1) = 0.3 and
P (a|c2) = 0.2 and P (b|c2) = 0.8. The probability of the data will be the
same under both parameter settings.
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Figure 2: Graphical depiction of IBM models 1 and 2. They are both
constrained mixture models. We do not show the French sentence length as
a variable and rather take it as given since the model never learns parameters
for it anyway.

This has an important consequence for the likelihood function of our
model. Let us assume that it has a maximum at one of the two parameter
configurations presented above. Then it will also have a maximum at the
other one. This has major implications for any parameter estimation method
based on the maximum likelihood principle. We will necessarily use the
estimate from one of the two maxima, without knowing which one performs
better empirically. If we use a hill-climbing parameter estimation method,
as we are forced to do when doing maximum likelihood estimation in models
with unobserved variables, the maximum that we arrive at in the end will
crucially depend on the point at which we started the optimisation. We will
see these problems come to bear shortly in the context of the IBM models.

3 IBM Model 1

Before we take a look at the actual IBM model 1, let us first formulate the
generative process that underlies this model. Recall that we assume that
we are given a language model. Thus, we assume that the English sentence
has already been produced for us. Therefore, we only need to formulate
a generative process for the French sentence conditioned on the English
sentence. The process works as follows:

1. Choose the French sentence length m based on the English sentence
length l.

2. For each French position j, choose the English position aj that it is
generated from.

3. For each French position j, choose a French word based on the English
word in position aj .

This generative story introduces a new variable Aj for each French position.
That variable is nothing but an indicator for the mixture component that the
French word in position j is generated from. The mixture components are
English words. We are thus dealing with a mixture model, albeit a peculiar
one. In normal mixture models, all mixture components can be assigned to a
given data point. In the IBM models, only the mixture components (English
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words) that are present in the English sentence can be used. This drastically
reduces the possible choice of mixture components for a given French word.
We are thus dealing with what I will call a constrained mixture model, where
the choice of mixture components is constrained by the English sentence.
Compare Figures 1 and 2 to understand the difference graphically.

Another non-standard aspect of the IBM models is that Aj does not
point to the mixture component directly but rather to the position in the
English sentence that contains the mixture component. This also tells us
something about the nature of the alignment variable. It is a variable that
ranges over positions in the English sentence.

At this point we should clarify some terminology: The assignment of
mixture components to French words for the entire French sentence is usu-
ally called an alignment. Each individual assignment for each French word is
called an alignment link. Such an alignment link contains two pieces of infor-
mation: the position of the French word (through the index j on the variable
Aj) and the position of the English word (through the assignment aj = i).
We can thus alternatively view an alignment link as a pair (j, i) where j is
the French position and i is the English position. The entire alignment can
be written as a vector (a1, . . . , am) (this is handy when implementing the
IBM models).

The IBM models also introduce one slight modification to the English
sentence. They add a hypothetical NULL word to each English sentence in
position 0. Why would they do that? Well, consider the German sentence

Ich gehe nach Hause

and its English translation
I go home .

The word-to-word translations are I=Ich, go=gehe, home=Hause but there
is no translation for the German preposition “nach”. If the German sentence
is to be generated from the English one, however, we need to assign some
mixture component to “nach”. Choosing an actual English word would be
non-sensical since we just stated that “nach” does not have a translation in
the English sentence. Brown et al. (1993) therefore introduced the NULL
word1. It is a generic mixture component that generates untranslatable
words.

With these preliminaries out of the way, let us actually formulate the
IBM alignment models. Notice that they model a joint distribution of the
French sentence length, an alignment (assignment of mixture components)
and the choice of French words, all of which are conditioned on the English

1Notice that our language model does not need to worry about the NULL word. It is
assumed to always be present in position 0 of every English sentence. Thus, we do not
need to model it probabilistically. If we did model it probabilistically, we’d trivially have
P (e0 = NULL) = 1.
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sentence. There are some important independence assumptions: first, we
assume that the alignment links are conditionally independent given the
French sentence length m and the English sentence. Second, we assume that
the French words are conditionally independent given the English sentence
and their alignment links. Finally, we assume that French sentence lengths
are uniformly distributed, meaning that there is a constant probability for
all possible French sentence lengths.

P (fm1 , a
m
1 ,m|el0) = P (m|el0)×

m∏
j=1

P (aj |m, el0)× P (fj |el0, aj) (4)

= P (m|l)×
m∏
j=1

P (aj |m, l)× P (fj |eaj ) (5)

∝
m∏
j=1

P (aj |m, l)× P (fj |eaj ) (6)

The proportionality in Equation (6) follows from the fact that P (m|l)
is a constant. Notice also that fj depends on the English sentence only
through the English word it is aligned to (the word in position aj , denoted
by eaj ). Furthermore, the alignment links depend on the English sentence
only through its length l.

IBM1 is a particularly simple version of this general model. It assumes
that P (aj |m, l) is uniform, i.e. constant, as well. Thus its probability mass
function can be written as

P (fm1 , a
m
1 ,m|el0) ∝

m∏
j=1

P (fj |eaj ) . (7)

4 Parameter Estimation for IBM1

We now turn to learning the parameters of IBM1. As we see in Equation 7,
the only probability mass functions whose parameters we need to learn are
those of the mixture components (the English words). The mixture weights
P (aj |m, l) are assumed to be fixed uniformly. We will assume that each
mixture component follows a categorical distribution. Thus, the probability
that each mixture component ei assigns to a sequence of French words is
given by

P (fm1 |ei) =

m∏
j=1

P (fj |ei) =

m∏
j=1

θfj |ei (8)

where θfj |ei is simply the probability of word fj under mixture component
ei. It is this probability that we want to estimate. We will do so using
maximum likelihood estimation (MLE).
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Recall that the maximum likelihood estimate for a conditional categori-
cal distribution in the case of fully observed data is simply

θ
(MLE)
x|y =

#xy

#y
(9)

where #xy is the number of times we have seen outcome x paired with
mixture component y in our data and #y is the number of times y was
observed with any data point. Notice that #y =

∑
x #xy. Since #xy is the

only information required from our data to arrive at the MLE, we call it a
sufficient statistic.

Here is the trouble with mixture models: as I pointed out at the end
of Section 2, mixture models are models of partially observed data. In par-
ticular, the mixture component responsible for each data point is hidden.
However, to do MLE for the mixture component parameters, we need the
sufficient statistics (counts in case of the categorical distribution). In partic-
ular, we need counts of how often each mixture component co-occurs with
each observed outcome. Where do we get these from?

One popular idea in machine learning is to simply use the expected
counts of mixture components under some auxiliary distribution. This is a
way of completing the data. However, instead of making “hard” decisions
about which mixture component to assign to which data point, we instead
assign mixture components partially according to their probability under
the auxiliary distribution. The MLE for that probabilistically completed
data then is

θ
(MLE)
x|y =

E[#xy]

E[#y]
(10)

where the expectation is taken with respect to the auxiliary distribution.
This of course begs the question of what a “good” auxiliary distribution is.
It can be shown (Neal and Hinton, 1999) that the best possible auxiliary
distribution under this framework is P (y|x), the posterior distribution of
the hidden variables.

This general procedure can be broken down into two steps. First, there is
the E(xpectation) step in which we compute the expected sufficient statistics
(the numerator of Equation (10)). Second, there is the M(aximisation) step
in which we find a maximum likelihood estimate based on the expected
statistics found in the E-step. This procedure is called the Expectation-
Maximisation (EM) algorithm. If applied repeatedly, it is guaranteed to
find a local maximum in the likelihood function.

EM for IBM1 Let us now apply the EM algorithm to parameter estima-
tion in IBM1. First, we need to compute the expected sufficient statistics.
To do so, we need to find the posterior distribution over mixture compo-
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nents, which for French word j is

P (aj = i|fj , el0) = P (aj = i|fj , ei) =
P (fj |ei)∑l
i=0 P (fj |ei)

. (11)

This may be slightly confusing. After all, the mixture components are
English words but we are computing a distribution over English positions.
Notice however, that each English position is uniquely associated with the
English word in that position. Thus, we are in fact computing a distribution
over available mixture components.

Next, we need to compute the expected co-occurrence count for an En-
glish word e and a french word f . To do so, we simply sum over all French
word positions2.

E[#ef ] =
m∑
j=1

P (aj = i|fj = f, ei = e) (12)

This completes the E-step. We now need to perform the M-step. This is
straightforwardly done by filling substituting f for x and e for y in Equation
(10).

Issues with non-identifiability In the case of IBM1, where the mixture
weights are fixed and uniform, EM is guaranteed to arrive at a global max-
imum. However, as pointed out in Section 2, there may be many global
maxima. For example, assume that the compound “ice cream” occurs sev-
eral times in a parallel corpus. Assume further that neither of the two
words occurs without the other. If we get MLE parameters from EM, we
are guaranteed to get another MLE estimate (not found by EM) by simply
exchanging the component distributions of “ice” and “cream”. Which of
the several possible MLEs the EM algorithm finds depends on the starting
parameters we provide it with. In practice, one usually starts from uniform
parameters. Note, however, that Toutanova and Galley (2011) have shown
that other initialisations may be better.

5 IBM Model 2

IBM2 is an extension of IBM1 that also learns the mixture weights. That
means that the weights are not fixed and uniform anymore during training.
We thus need a new likelihood function for this model. We will take the

2The reason we can do this is because French words in different positions together with
their generating mixture components are assumed to be independent. This means that
the posterior factorises in the same way as the likelihood in Equation 8. Notice also that if
we are dealing with a full parallel corpus, the summation is done over all French positions
in the corpus.
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one from Equation (6). We are going to model the probability of an align-
ment link as the conditional probability of generating French position j from
English position i.

P (aj = i|m, l) = P (i|j,m, l) (13)

Other formulations are possible but this is the one originally chosen by
Brown et al. (1993). It is crucial that we condition on m and l in order to
know which positions are available in the first place. The full probability
mass function for IBM2 is

P (fm1 , a
m
1 ,m|el0) ∝

m∏
j=1

P (i|j,m, l)× P (fj |ei) (14)

where we have again dropped the constant term for the length probability.

6 Parameter Estimation for IBM2

The posterior for IBM2 simply contains an additional factor that stems from
the non-uniform mixture weights introduced in Equation (14).

P (aj = i|fj , el0,m) = P (aj = i|fj , ei,m, l) =
P (i|j,m, l)× P (fj |ei)∑l
i=0 P (i|j,m, l)× P (fj |ei)

(15)
In addition to the expected sufficient statistics for the lexical transla-

tions, we now also need expected sufficient statistics for the alignment pa-
rameters. We condition these expectations on the sentence lengths because
the alignment parameters vary with these lengths. For each sentence pair,
those expected sufficient statistics then are

E[#ij|m, l] = P (aj = i|fj , ei,m, l) . (16)

As with lexical translations, we need to sum these expected sufficient statis-
tics over the entire parallel corpus if we are dealing with more than one
sentence.

Issues with non-identifiability As we have seen with IBM1, there may
be several maxima in the likelihood function of the IBM models. This prob-
lem escalates in IBM2. First of all, the mixture weights are not fixed any-
more, adding several new parameters to the model. Second, because of the
asymmetric mixture weights, most maxima are now local. As in IBM model
1, exchanging the component distributions of “ice” and “cream” will again
yield a maximum in the likelihood function. However, because the mixture
weights are not uniform, one of the two maxima will have a lower likeli-
hood value than the other. Moreover, neither of them is guaranteed to be
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a global maximum. This is because the model needs to find a good bal-
ance between the mixture weights (which are independent of lexical content
and only depend on positions) and the component distributions (which are
entirely lexical). Changing the weights may induce a change in the com-
ponent distributions and the other way around. This can lead to complex
interactions between the model parameters.

An additional worry is that EM is only guaranteed to find a local max-
imum which may be far from globally optimal. In practice, one initialises
the component distributions of IBM2 (i.e. its translation parameters) with
IBM1 estimates. The alignment distributions are initialised uniformly. No-
tice that this implies that we first have to train IBM1 before proceeding to
training IBM2.

7 Decoding

Recall that we do not use the IBM models for translation but only for word
alignment. Thus, after having trained the models, we need to decide on one
specific alignment (this process is usually referred to as decoding). We will
pick the alignment that has the highest posterior probability. This is often
called the Viterbi alignment. The posterior probabilities for alignment links
are given in Equations (11) and (15) for IBM models 1 and 2, respectively.

Notice that because we have assumed conditional independence of the
alignment links, the problem of maximising the probability of an alignment
conveniently factorises over the individual alignment links. In other words:
to find the best alignment for an entire sentence we only need to find the
best alignment link for each French word. This can be formalised as

max
am1

P (am1 |fm1 , el0) =
m∏
j=1

max
aj

P (aj |fj , eaj ,m, l) . (17)

Outputting the final alignment is achieved by returning

arg max
am1

P (am1 |fm1 , el0) .

Finally, recall that there is a NULL word that produces words that do not
have a lexical translation. Whenever the NULL word (or, equivalently, the
0th position) is the most probable component, we leave the French word in
question unaligned.

8 Further Reading

The original text by (Brown et al., 1993) is fairly long and involved and you
should probably read it only after you have completed your first course on
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machine translation. Michael Collins offers an excellent tutorial on his web-
site that focuses on the algorithmic description of the EM learning algorithm
for the IBM models and also provides some pseudo-code. You’ll definitely
want to look at this before you start implementing the models yourself.
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