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Introduction

Introduction

Machine Translation (MT),
Image Description Generation (IDG), and
Multi-modal Machine Translation (MMT):

MT IDG MMT

learn a model 3 3 3

NLP vs. CV NLP NLP+CV NLP+CV
generate a description 3 ? 3 33

generate a translation 3 3 ? 33

source/target pairs 3 7 3 ?
source/target/image tuples s,t t,i s,t,i
text-only vs. multi-modal text-only multi-modal multi-modal
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Introduction

Multi-modal MT: Practical use cases

localisation of product information in e-commerce,
e.g. eBay, Amazon, Alibaba;
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Introduction

Multi-modal MT: Practical use cases

localisation of user posts and photos in social media,
e.g. Twitter, Facebook, Instagram;
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Introduction

Multi-modal MT: Practical use cases

translation of subtitles using video stream.
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Introduction

Multi-modal MT: Practical use cases

and, of course, the most important of it all...

MEMES’ localisation
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Convolutional Neural Networks (CNNs)

CNNs

Virtually all MMT and IDG models use
pre-trained CNNs for image feature extraction;

VGG 19 network
Simonyan and Zisserman (2014), https://goo.gl/y0So1l
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Convolutional Neural Networks (CNNs)

CNN examples

https://goo.gl/jqQEvg

Illustration of a residual connection (He et al., 2015).
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NMT and IDG Architectures

Neural Machine Translation
An attention mechanism lets the decoder search for the best source
words to generate each target word, e.g. Bahdanau et al., 2015.
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NMT and IDG Architectures

Neural Image Description Generation
An attention mechanism lets the decoder look at specific parts of the
image when generating each target word, e.g. Xu et al., 2015.
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NMT and IDG Architectures

Heidelberg University

(Hitschler et al., 2016)
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NMT and IDG Architectures

CMU [1/3]

(Huang et al., 2016)
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NMT and IDG Architectures

CMU [2/3]

(Huang et al., 2016)
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NMT and IDG Architectures

CMU [3/3]

(Huang et al., 2016)
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NMT and IDG Architectures

Global visual features

(Calixto et al., 2017)
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NMT and IDG Architectures

UvA-TiCC

(Elliott and Kádár, 2017)
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NMT and IDG Architectures

LIUM-CVC (Caglayan et al., 2017)

• Global visual features, i.e. 2048D pool5 features from a
ResNet-50 network, are multiplicatively interacted with the target
word embeddings;

• With 128D embeddings and 256D recurrent layers, their resulting
models have ∼5M parameters.

(Elliott et al., 2017)
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NMT and IDG Architectures

Doubly-Attentive MMT

(Calixto et al., 2017)
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Conclusions

Conclusions

• multi-modal neural MT use cases;

• visually grounded MT models;
• models that efficiently exploit additional data in pre-training;
• visual attention can be used as a tool for model interpretability;
• what’s next?

• multi-task learning, e.g. visual question answering;
• generative multi-modal MT models;
• use images to ground models while being able to translate

sentences without images?
• using external knowledge (i.e. multi-modal knowledge bases) in

end-to-end learning;
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Conclusions

Thank you!

Questions?
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