
Decoding for SMT

Wilker Aziz

April 19, 2016

Table of Contents

Introduction

Monotone word replacement models

Reordering
Unconstrained
Distortion limit
ITG

Parameterisation

Decision rules

Decoding algorithms

2 / 53

Task

Translate a source text (e.g. sentence)
Examples:

um conto de duas cidades → a tale of two cities
nosso amigo comum → our mutual friend

a loja de antiguidades → the old curiosity shop
o grill da lareira → the cricket on the hearth

1 / 53

Model of translational equivalences

Defines the space of possible translations
I think of it as a recipe to generate translations

[Lopez, 2008]

Example:
I a word replacement model
I operates in monotone left-to-right order
I with no insertions or deletions
I constrained to known word-to-word bilingual mappings

(rule set)

2 / 53

Model of translational equivalences

Defines the space of possible translations
I think of it as a recipe to generate translations

[Lopez, 2008]

Example:
I a word replacement model

I operates in monotone left-to-right order
I with no insertions or deletions
I constrained to known word-to-word bilingual mappings

(rule set)

2 / 53

Model of translational equivalences

Defines the space of possible translations
I think of it as a recipe to generate translations

[Lopez, 2008]

Example:
I a word replacement model
I operates in monotone left-to-right order

I with no insertions or deletions
I constrained to known word-to-word bilingual mappings

(rule set)

2 / 53

Model of translational equivalences

Defines the space of possible translations
I think of it as a recipe to generate translations

[Lopez, 2008]

Example:
I a word replacement model
I operates in monotone left-to-right order
I with no insertions or deletions

I constrained to known word-to-word bilingual mappings
(rule set)

2 / 53

Model of translational equivalences

Defines the space of possible translations
I think of it as a recipe to generate translations

[Lopez, 2008]

Example:
I a word replacement model
I operates in monotone left-to-right order
I with no insertions or deletions
I constrained to known word-to-word bilingual mappings

(rule set)

2 / 53

Monotone word-by-word translation: solutions

Source: um conto de duas cidades
Translation rules1

um {a, some, one}
conto {tale, story, narrative, novella}
de {of, from, ’s}
duas {two, couple}
cidades {cities, towns, villages}

1Unrealistically simple
3 / 53

Monotone word-by-word translation: solutions

um conto de duas cidades

3 / 53

um {a, some, one}
conto {tale, story, narrative, novella}
de {of, from, ’s}
duas {two, couple}
cidades {cities, towns, villages}

Monotone word-by-word translation: solutions

um conto de duas cidades
a tale of two cities

3 / 53

um {a, some, one}
conto {tale, story, narrative, novella}
de {of, from, ’s}
duas {two, couple}
cidades {cities, towns, villages}

Monotone word-by-word translation: solutions

um conto de duas cidades
a tale of two cities
a tale of two towns

3 / 53

um {a, some, one}
conto {tale, story, narrative, novella}
de {of, from, ’s}
duas {two, couple}
cidades {cities, towns, villages}

Monotone word-by-word translation: solutions

um conto de duas cidades
a tale of two cities
a tale of two towns
a tale of two villages

3 / 53

um {a, some, one}
conto {tale, story, narrative, novella}
de {of, from, ’s}
duas {two, couple}
cidades {cities, towns, villages}

Monotone word-by-word translation: solutions

um conto de duas cidades
a tale of two cities
a tale of two towns
a tale of two villages
a tale of couple cities

3 / 53

um {a, some, one}
conto {tale, story, narrative, novella}
de {of, from, ’s}
duas {two, couple}
cidades {cities, towns, villages}

Monotone word-by-word translation: solutions

um conto de duas cidades
a tale of two cities
a tale of two towns
a tale of two villages
a tale of couple cities
a tale of couple towns

3 / 53

um {a, some, one}
conto {tale, story, narrative, novella}
de {of, from, ’s}
duas {two, couple}
cidades {cities, towns, villages}

Monotone word-by-word translation: solutions

um conto de duas cidades
a tale of two cities
a tale of two towns
a tale of two villages
a tale of couple cities
a tale of couple towns
...

3 / 53

um {a, some, one}
conto {tale, story, narrative, novella}
de {of, from, ’s}
duas {two, couple}
cidades {cities, towns, villages}

This can go very far :(

Monotone word-by-word translation: complexity

Say
I the input has I words
I we know at most t translation options per source word

This makes O(tI) solutions
Note

I WMT14’s shared task: I = 40 on average
I last I checked Moses default was t = 100

(for a more complex model)
I silly monotone word replacement model: 1080 solutions

4 / 53

Monotone word-by-word translation: complexity

Say
I the input has I words
I we know at most t translation options per source word

This makes O(tI) solutions

Note
I WMT14’s shared task: I = 40 on average
I last I checked Moses default was t = 100

(for a more complex model)
I silly monotone word replacement model: 1080 solutions

4 / 53

Monotone word-by-word translation: complexity

Say
I the input has I words
I we know at most t translation options per source word

This makes O(tI) solutions
Note

I WMT14’s shared task: I = 40 on average
I last I checked Moses default was t = 100

(for a more complex model)
I silly monotone word replacement model: 1080 solutions

4 / 53

Space of solutions as intersection/composition

5 / 53

a

um:a
um:some
um:one
conto:tale
conto:story
conto:narrative
conto:novella
de:of
de:from
de:’s
duas:two
duas:couple
cidades:cities
cidades:towns
cidades:villages

0 1 2 3 4 5um conto de duas cidades

Space of solutions as intersection/composition

5 / 53

a

um:a
um:some
um:one
conto:tale
conto:story
conto:narrative
conto:novella
de:of
de:from
de:’s
duas:two
duas:couple
cidades:cities
cidades:towns
cidades:villages

0 1 2 3 4 5um conto de duas cidades

0, a 1, a 2, a 3, a 4, a 5, a

Space of solutions as intersection/composition

5 / 53

a

um:a ←
um:some
um:one
conto:tale
conto:story
conto:narrative
conto:novella
de:of
de:from
de:’s
duas:two
duas:couple
cidades:cities
cidades:towns
cidades:villages

0 1 2 3 4 5um? conto de duas cidades

0, a 1, a 2, a 3, a 4, a 5, a

a

Space of solutions as intersection/composition

5 / 53

a

um:a X
um:some ←
um:one
conto:tale
conto:story
conto:narrative
conto:novella
de:of
de:from
de:’s
duas:two
duas:couple
cidades:cities
cidades:towns
cidades:villages

0 1 2 3 4 5um? conto de duas cidades

0, a 1, a 2, a 3, a 4, a 5, a

a
some

Space of solutions as intersection/composition

5 / 53

a

um:a X
um:some X
um:one ←
conto:tale
conto:story
conto:narrative
conto:novella
de:of
de:from
de:’s
duas:two
duas:couple
cidades:cities
cidades:towns
cidades:villages

0 1 2 3 4 5um? conto de duas cidades

0, a 1, a 2, a 3, a 4, a 5, a

a
some
one

Space of solutions as intersection/composition

5 / 53

a

um:a X
um:some X
um:one X
conto:tale ←
conto:story
conto:narrative
conto:novella
de:of
de:from
de:’s
duas:two
duas:couple
cidades:cities
cidades:towns
cidades:villages

0 1 2 3 4 5um conto? de duas cidades

0, a 1, a 2, a 3, a 4, a 5, a

a
some
one

tale

Space of solutions as intersection/composition

5 / 53

a

um:a X
um:some X
um:one X
conto:tale X
conto:story ←
conto:narrative
conto:novella
de:of
de:from
de:’s
duas:two
duas:couple
cidades:cities
cidades:towns
cidades:villages

0 1 2 3 4 5um conto? de duas cidades

0, a 1, a 2, a 3, a 4, a 5, a

a
some
one

tale
story

Space of solutions as intersection/composition

5 / 53

a

um:a X
um:some X
um:one X
conto:tale X
conto:story X
conto:narrative ←
conto:novella
de:of
de:from
de:’s
duas:two
duas:couple
cidades:cities
cidades:towns
cidades:villages

0 1 2 3 4 5um conto? de duas cidades

0, a 1, a 2, a 3, a 4, a 5, a

a
some
one

tale
story

narrative

Space of solutions as intersection/composition

5 / 53

a

um:a X
um:some X
um:one X
conto:tale X
conto:story X
conto:narrative X
conto:novella←
de:of
de:from
de:’s
duas:two
duas:couple
cidades:cities
cidades:towns
cidades:villages

0 1 2 3 4 5um conto? de duas cidades

0, a 1, a 2, a 3, a 4, a 5, a

a
some
one

tale
story

narrative

novella

Space of solutions as intersection/composition

5 / 53

a

um:a X
um:some X
um:one X
conto:tale X
conto:story X
conto:narrative X
conto:novellaX
de:of ←
de:from
de:’s
duas:two
duas:couple
cidades:cities
cidades:towns
cidades:villages

0 1 2 3 4 5um conto de? duas cidades

0, a 1, a 2, a 3, a 4, a 5, a

a
some
one

tale
story

narrative

novella

of

Space of solutions as intersection/composition

5 / 53

a

um:a X
um:some X
um:one X
conto:tale X
conto:story X
conto:narrative X
conto:novellaX
de:of X
de:from ←
de:’s
duas:two
duas:couple
cidades:cities
cidades:towns
cidades:villages

0 1 2 3 4 5um conto de? duas cidades

0, a 1, a 2, a 3, a 4, a 5, a

a
some
one

tale
story

narrative

novella

of
from

Space of solutions as intersection/composition

5 / 53

a

um:a X
um:some X
um:one X
conto:tale X
conto:story X
conto:narrative X
conto:novellaX
de:of X
de:from X
de:’s ←
duas:two
duas:couple
cidades:cities
cidades:towns
cidades:villages

0 1 2 3 4 5um conto de? duas cidades

0, a 1, a 2, a 3, a 4, a 5, a

a
some
one

tale
story

narrative

novella

of
from

’s

Space of solutions as intersection/composition

5 / 53

a

um:a X
um:some X
um:one X
conto:tale X
conto:story X
conto:narrative X
conto:novellaX
de:of X
de:from X
de:’s X
duas:two ←
duas:couple
cidades:cities
cidades:towns
cidades:villages

0 1 2 3 4 5um conto de duas? cidades

0, a 1, a 2, a 3, a 4, a 5, a

a
some
one

tale
story

narrative

novella

of
from

’s

two

Space of solutions as intersection/composition

5 / 53

a

um:a X
um:some X
um:one X
conto:tale X
conto:story X
conto:narrative X
conto:novellaX
de:of X
de:from X
de:’s X
duas:two X
duas:couple ←
cidades:cities
cidades:towns
cidades:villages

0 1 2 3 4 5um conto de duas? cidades

0, a 1, a 2, a 3, a 4, a 5, a

a
some
one

tale
story

narrative

novella

of
from

’s

two

couple

Space of solutions as intersection/composition

5 / 53

a

um:a X
um:some X
um:one X
conto:tale X
conto:story X
conto:narrative X
conto:novellaX
de:of X
de:from X
de:’s X
duas:two X
duas:couple X
cidades:cities ←
cidades:towns
cidades:villages

0 1 2 3 4 5um conto de duas cidades?

0, a 1, a 2, a 3, a 4, a 5, a

a
some
one

tale
story

narrative

novella

of
from

’s

two

couple

cities

Space of solutions as intersection/composition

5 / 53

a

um:a X
um:some X
um:one X
conto:tale X
conto:story X
conto:narrative X
conto:novellaX
de:of X
de:from X
de:’s X
duas:two X
duas:couple X
cidades:cities X
cidades:towns ←
cidades:villages

0 1 2 3 4 5um conto de duas cidades?

0, a 1, a 2, a 3, a 4, a 5, a

a
some
one

tale
story

narrative

novella

of
from

’s

two

couple

cities
towns

Space of solutions as intersection/composition

5 / 53

a

um:a X
um:some X
um:one X
conto:tale X
conto:story X
conto:narrative X
conto:novellaX
de:of X
de:from X
de:’s X
duas:two X
duas:couple X
cidades:cities X
cidades:towns X
cidades:villages ←

0 1 2 3 4 5um conto de duas cidades?

0, a 1, a 2, a 3, a 4, a 5, a

a
some
one

tale
story

narrative

novella

of
from

’s

two

couple

cities
towns

villages

Space of solutions as intersection/composition

5 / 53

a

um:a X
um:some X
um:one X
conto:tale X
conto:story X
conto:narrative X
conto:novellaX
de:of X
de:from X
de:’s X
duas:two X
duas:couple X
cidades:cities X
cidades:towns X
cidades:villages X

0 1 2 3 4 5um conto de duas cidades

0, a 1, a 2, a 3, a 4, a 5, a

a
some
one

tale
story

narrative

novella

of
from

’s

two

couple

cities
towns

villages

3× 4× 3× 2× 3 = 216 solutions
I 6 states
I 3 + 4 + 3 + 2 + 3 = 15 transitions

Packing solutions with finite-state automata

Same O(tI) solutions using
I O(I) states
I O(tI) transitions

6 / 53

Recap 1

Model of translational equivalences
I defines the space of possible sentence pairs
I conveniently decomposes into smaller bilingual mappings

Monotone word replacement model
I easy to represent using finite-state transducers
I set of translations given by composition
I exponential number of solutions in linear space
I translates infinitely many sentences

but not nearly enough interesting cases!

7 / 53

Recap 1

Model of translational equivalences
I defines the space of possible sentence pairs
I conveniently decomposes into smaller bilingual mappings

Monotone word replacement model
I easy to represent using finite-state transducers
I set of translations given by composition
I exponential number of solutions in linear space
I translates infinitely many sentences

but not nearly enough interesting cases!

7 / 53

Recap 1

Model of translational equivalences
I defines the space of possible sentence pairs
I conveniently decomposes into smaller bilingual mappings

Monotone word replacement model
I easy to represent using finite-state transducers

I set of translations given by composition
I exponential number of solutions in linear space
I translates infinitely many sentences

but not nearly enough interesting cases!

7 / 53

Recap 1

Model of translational equivalences
I defines the space of possible sentence pairs
I conveniently decomposes into smaller bilingual mappings

Monotone word replacement model
I easy to represent using finite-state transducers
I set of translations given by composition

I exponential number of solutions in linear space
I translates infinitely many sentences

but not nearly enough interesting cases!

7 / 53

Recap 1

Model of translational equivalences
I defines the space of possible sentence pairs
I conveniently decomposes into smaller bilingual mappings

Monotone word replacement model
I easy to represent using finite-state transducers
I set of translations given by composition
I exponential number of solutions in linear space

I translates infinitely many sentences
but not nearly enough interesting cases!

7 / 53

Recap 1

Model of translational equivalences
I defines the space of possible sentence pairs
I conveniently decomposes into smaller bilingual mappings

Monotone word replacement model
I easy to represent using finite-state transducers
I set of translations given by composition
I exponential number of solutions in linear space
I translates infinitely many sentences

but not nearly enough interesting cases!

7 / 53

Recap 1

Model of translational equivalences
I defines the space of possible sentence pairs
I conveniently decomposes into smaller bilingual mappings

Monotone word replacement model
I easy to represent using finite-state transducers
I set of translations given by composition
I exponential number of solutions in linear space
I translates infinitely many sentences

but not nearly enough interesting cases!

7 / 53

Monotone word-by-word translation: fail!

8 / 53

nosso {our, ours}
amigo {friend, mate}
comum {ordinary, common, usual, mutual}

0 1 2 3nosso amigo comum

Monotone word-by-word translation: fail!

8 / 53

nosso {our, ours}
amigo {friend, mate}
comum {ordinary, common, usual, mutual}

0 1 2 3
amigo comum

our

ours

Monotone word-by-word translation: fail!

8 / 53

nosso {our, ours}
amigo {friend, mate}
comum {ordinary, common, usual, mutual}

0 1 2 3comum
our

ours

mate

friend

Monotone word-by-word translation: fail!

8 / 53

nosso {our, ours}
amigo {friend, mate}
comum {ordinary, common, usual, mutual}

0 1 2 3
our

ours

mate

friend
common

usual

ordinary

mutual

Monotone word-by-word translation: fail!

8 / 53

nosso {our, ours}
amigo {friend, mate}
comum {ordinary, common, usual, mutual}

0 1 2 3
our

ours

mate

friend
common

usual

ordinary

mutual

We simply cannot obtain a correct translation

our mutual friend

Reordering

Our model of translational equivalences assumes monotonicity
I a word replacement model
I operates in monotone left-to-right order
I with no insertions or deletions
I constrained to known word-to-word bilingual mappings

(rule set)

9 / 53

Reordering

Not anymore!
I a word replacement model
I operates in arbitrary order
I with no insertions or deletions
I constrained to known word-to-word bilingual mappings

(rule set)

9 / 53

Translating arbitrary permutations

nosso amigo comum

0 1 2 3
our

ours

mate

friend
common

usual

ordinary

mutual

10 / 53

Translating arbitrary permutations

nosso amigo comum

0 1 2 3
our

ours

mate

friend
common

usual

ordinary

mutual

amigo nosso comum

0 1 2 3
mate

friend

our

ours
common

usual

ordinary

mutual

10 / 53

Translating arbitrary permutations

nosso amigo comum

0 1 2 3
our

ours

mate

friend
common

usual

ordinary

mutual

nosso comum amigo

0 1 2 3
our

ours
common

usual

ordinary

mutual

mate

friend

amigo nosso comum

0 1 2 3
mate

friend

our

ours
common

usual

ordinary

mutual

10 / 53

Translating arbitrary permutations

nosso amigo comum

0 1 2 3
our

ours

mate

friend
common

usual

ordinary

mutual

nosso comum amigo

0 1 2 3
our

ours
common

usual

ordinary

mutual

mate

friend

amigo nosso comum

0 1 2 3
mate

friend

our

ours
common

usual

ordinary

mutual

comum nosso amigo

0 1 2 3common
usual

ordinary

mutual

our

ours

mate

friend

10 / 53

Translating arbitrary permutations

nosso amigo comum

0 1 2 3
our

ours

mate

friend
common

usual

ordinary

mutual

nosso comum amigo

0 1 2 3
our

ours
common

usual

ordinary

mutual

mate

friend

amigo comum nosso

0 1 2 3
mate

friend
common

usual

ordinary

mutual

our

ours

amigo nosso comum

0 1 2 3
mate

friend

our

ours
common

usual

ordinary

mutual

comum nosso amigo

0 1 2 3common
usual

ordinary

mutual

our

ours

mate

friend

10 / 53

Translating arbitrary permutations

nosso amigo comum

0 1 2 3
our

ours

mate

friend
common

usual

ordinary

mutual

nosso comum amigo

0 1 2 3
our

ours
common

usual

ordinary

mutual

mate

friend

amigo comum nosso

0 1 2 3
mate

friend
common

usual

ordinary

mutual

our

ours

amigo nosso comum

0 1 2 3
mate

friend

our

ours
common

usual

ordinary

mutual

comum nosso amigo

0 1 2 3common
usual

ordinary

mutual

our

ours

mate

friend

comum amigo nosso

0 1 2 3common
usual

ordinary

mutual

mate

friend

our

ours

10 / 53

Translating arbitrary permutations

nosso amigo comum

0 1 2 3
our

ours

mate

friend
common

usual

ordinary

mutual

nosso comum amigo

0 1 2 3
our

ours
common

usual

ordinary

mutual

mate

friend

amigo comum nosso

0 1 2 3
mate

friend
common

usual

ordinary

mutual

our

ours

amigo nosso comum

0 1 2 3
mate

friend

our

ours
common

usual

ordinary

mutual

comum nosso amigo

0 1 2 3common
usual

ordinary

mutual

our

ours

mate

friend

comum amigo nosso

0 1 2 3common
usual

ordinary

mutual

mate

friend

our

ours

3! = 3× 2× 1 = 6 permutations

10 / 53

Translating arbitrary permutations

nosso amigo comum

0 1 2 3
our

ours

mate

friend
common

usual

ordinary

mutual

nosso comum amigo

0 1 2 3
our

ours
common

usual

ordinary

mutual

mate

friend

amigo comum nosso

0 1 2 3
mate

friend
common

usual

ordinary

mutual

our

ours

amigo nosso comum

0 1 2 3
mate

friend

our

ours
common

usual

ordinary

mutual

comum nosso amigo

0 1 2 3common
usual

ordinary

mutual

our

ours

mate

friend

comum amigo nosso

0 1 2 3common
usual

ordinary

mutual

mate

friend

our

ours

each has 2× 2× 4 = 16 translations

10 / 53

Translating arbitrary permutations

nosso amigo comum

0 1 2 3
our

ours

mate

friend
common

usual

ordinary

mutual

nosso comum amigo

0 1 2 3
our

ours
common

usual

ordinary

mutual

mate

friend

amigo comum nosso

0 1 2 3
mate

friend
common

usual

ordinary

mutual

our

ours

amigo nosso comum

0 1 2 3
mate

friend

our

ours
common

usual

ordinary

mutual

comum nosso amigo

0 1 2 3common
usual

ordinary

mutual

our

ours

mate

friend

comum amigo nosso

0 1 2 3common
usual

ordinary

mutual

mate

friend

our

ours

amounting to 6× 16 = 96 solutions

10 / 53

Translating arbitrary permutations

nosso amigo comum

0 1 2 3
our

ours

mate

friend
common

usual

ordinary

mutual

nosso comum amigo

0 1 2 3
our

ours
common

usual

ordinary

mutual

mate

friend

amigo comum nosso

0 1 2 3
mate

friend
common

usual

ordinary

mutual

our

ours

amigo nosso comum

0 1 2 3
mate

friend

our

ours
common

usual

ordinary

mutual

comum nosso amigo

0 1 2 3common
usual

ordinary

mutual

our

ours

mate

friend

comum amigo nosso

0 1 2 3common
usual

ordinary

mutual

mate

friend

our

ours

I ! permutations × tI translations

10 / 53

Packing permutations

0 1 2 3nosso amigo comum

11 / 53

Packing permutations

0 1 2 3
amigo comum

nosso
amigo

comum

11 / 53

Packing permutations

0 1 2 3comum
nosso
amigo

comum

nosso
amigo

comum

11 / 53

Packing permutations

0 1 2 3

nosso
amigo

comum

nosso
amigo

comum

nosso
amigo

comum

11 / 53

Packing permutations

000 1 2 3

100

amigo
comum

nosso
amigo

comum

nosso
amigo

comum

nosso

amigo

comum

11 / 53

Packing permutations

000 2 3

100

010

001

nosso

comum

nosso
amigo

comum

nosso

amigo

comum

comum

amigo

nosso

amigo

11 / 53

Packing permutations

000 2 3

100

010

001

110

comum

nosso
amigo

nosso comum

comum

amigo

nosso

amigo

amigo

nosso

comum

11 / 53

Packing permutations

000

100

010

001

110

101

011

111

nosso

comum

amigo

amigo

nosso

comum
comum

comumnosso

amigo

amigo

nosso

11 / 53

Packing permutations

Powerset (all subsets) of {1, 2, . . . , I}
I 2I subsets

think of a vector of I bits ;)
Lattice

I O(2I) states
I O(I × 2I) transitions

12 / 53

000

100

010

001

110

101

011

111

nosso

amigo

comum

amigo

comum
comum

nosso

comum
nosso

amigo

amigo

nosso

Deductive logic

Item
[
{0, 1}I

]
Goal

[
1I
]

Axiom

[0I]
Expand

[C]
[αi(C)]

1 ≤ i ≤ I
ci = 0̄

where αi(C) is a copy of C with ci = 1̄

Template
I items → states
I deduction rules → transitions

13 / 53

Deductive logic

Item
[
{0, 1}I

]
Goal

[
1I
]

Axiom

[0I]
Expand

[C]
[αi(C)]

1 ≤ i ≤ I
ci = 0̄

where αi(C) is a copy of C with ci = 1̄

I a subset of {1, . . . , I}
encoded as a bit vector of length I

13 / 53

Deductive logic

Item
[
{0, 1}I

]
Goal

[
1I
]

Axiom

[0I]
Expand

[C]
[αi(C)]

1 ≤ i ≤ I
ci = 0̄

where αi(C) is a copy of C with ci = 1̄

I we start with an empty sentence
e.g. I = 3→ 03 = 000

13 / 53

Deductive logic

Item
[
{0, 1}I

]
Goal

[
1I
]

Axiom

[0I]
Expand

[C]
[αi(C)]

1 ≤ i ≤ I
ci = 0̄

where αi(C) is a copy of C with ci = 1̄

I and continue one word at a time
e.g. [000](i = 1)→ [100]

13 / 53

Deductive logic

Item
[
{0, 1}I

]
Goal

[
1I
]

Axiom

[0I]
Expand

[C]
[αi(C)]

1 ≤ i ≤ I
ci = 0̄

where αi(C) is a copy of C with ci = 1̄

I until we have a complete sentence
e.g. [111]

13 / 53

Instantiated deductive logic program

Source: nosso1 amigo2 comum3

14 / 53

Item
[
{0, 1}I

]
Goal

[
1I
]

Axiom

[0I]
Expand

[C]
[αi(C)]

1 ≤ i ≤ I
ci = 0̄

Instantiated deductive logic program

Source: nosso1 amigo2 comum3
Axiom

[000]

14 / 53

Item
[
{0, 1}I

]
Goal

[
1I
]

Axiom

[0I]
Expand

[C]
[αi(C)]

1 ≤ i ≤ I
ci = 0̄

000

Instantiated deductive logic program

Source: nosso1 amigo2 comum3
Axiom

[000]
Expand

[000](i = 1)→ [100]

14 / 53

Item
[
{0, 1}I

]
Goal

[
1I
]

Axiom

[0I]
Expand

[C]
[αi(C)]

1 ≤ i ≤ I
ci = 0̄

000

100

nosso

Instantiated deductive logic program

Source: nosso1 amigo2 comum3
Axiom

[000]
Expand

[000](i = 1)→ [100]
[000](i = 2)→ [010]

14 / 53

Item
[
{0, 1}I

]
Goal

[
1I
]

Axiom

[0I]
Expand

[C]
[αi(C)]

1 ≤ i ≤ I
ci = 0̄

000

100

010

nosso

amigo

Instantiated deductive logic program

Source: nosso1 amigo2 comum3
Axiom

[000]
Expand

[000](i = 1)→ [100]
[000](i = 2)→ [010]
[000](i = 3)→ [001]

14 / 53

Item
[
{0, 1}I

]
Goal

[
1I
]

Axiom

[0I]
Expand

[C]
[αi(C)]

1 ≤ i ≤ I
ci = 0̄

000

100

010

001

nosso

amigo

comum

Instantiated deductive logic program

Source: nosso1 amigo2 comum3
Axiom

[000]
Expand

[000](i = 1)→ [100]
[000](i = 2)→ [010]
[000](i = 3)→ [001]
[100](i = 1) 7

14 / 53

Item
[
{0, 1}I

]
Goal

[
1I
]

Axiom

[0I]
Expand

[C]
[αi(C)]

1 ≤ i ≤ I
ci = 0̄

000

100

010

001

nosso

amigo

comum

Instantiated deductive logic program

Source: nosso1 amigo2 comum3
Axiom

[000]
Expand

[000](i = 1)→ [100]
[000](i = 2)→ [010]
[000](i = 3)→ [001]
[100](i = 1) 7
[100](i = 2)→ [110]

14 / 53

Item
[
{0, 1}I

]
Goal

[
1I
]

Axiom

[0I]
Expand

[C]
[αi(C)]

1 ≤ i ≤ I
ci = 0̄

000

100

010

001

110

nosso

amigo

comum

amigo

Instantiated deductive logic program

Source: nosso1 amigo2 comum3
Axiom

[000]
Expand

[000](i = 1)→ [100]
[000](i = 2)→ [010]
[000](i = 3)→ [001]
[100](i = 1) 7
[100](i = 2)→ [110]
[100](i = 3)→ [101]

14 / 53

Item
[
{0, 1}I

]
Goal

[
1I
]

Axiom

[0I]
Expand

[C]
[αi(C)]

1 ≤ i ≤ I
ci = 0̄

000

100

010

001

110

101

nosso

amigo

comum

amigo

comum

Instantiated deductive logic program

Source: nosso1 amigo2 comum3
Axiom

[000]
Expand

[000](i = 1)→ [100]
[000](i = 2)→ [010]
[000](i = 3)→ [001]
[100](i = 1) 7
[100](i = 2)→ [110]
[100](i = 3)→ [101]
[010](i = 1)→ [110]

14 / 53

Item
[
{0, 1}I

]
Goal

[
1I
]

Axiom

[0I]
Expand

[C]
[αi(C)]

1 ≤ i ≤ I
ci = 0̄

000

100

010

001

110

101

nosso

amigo

comum

amigo

comum

nosso

Instantiated deductive logic program

Source: nosso1 amigo2 comum3
Axiom

[000]
Expand

[000](i = 1)→ [100]
[000](i = 2)→ [010]
[000](i = 3)→ [001]
[100](i = 1) 7
[100](i = 2)→ [110]
[100](i = 3)→ [101]
[010](i = 1)→ [110]
[010](i = 2) 7

14 / 53

Item
[
{0, 1}I

]
Goal

[
1I
]

Axiom

[0I]
Expand

[C]
[αi(C)]

1 ≤ i ≤ I
ci = 0̄

000

100

010

001

110

101

nosso

amigo

comum

amigo

comum

nosso

Instantiated deductive logic program

Source: nosso1 amigo2 comum3
Axiom

[000]
Expand

[000](i = 1)→ [100]
[000](i = 2)→ [010]
[000](i = 3)→ [001]
[100](i = 1) 7
[100](i = 2)→ [110]
[100](i = 3)→ [101]
[010](i = 1)→ [110]
[010](i = 2) 7
[010](i = 3)→ [011]

14 / 53

Item
[
{0, 1}I

]
Goal

[
1I
]

Axiom

[0I]
Expand

[C]
[αi(C)]

1 ≤ i ≤ I
ci = 0̄

000

100

010

001

110

101

011

nosso

amigo

comum

amigo

comum

nosso

comum

Instantiated deductive logic program

Source: nosso1 amigo2 comum3
Axiom

[000]
Expand

[000](i = 1)→ [100]
[000](i = 2)→ [010]
[000](i = 3)→ [001]
[100](i = 1) 7
[100](i = 2)→ [110]
[100](i = 3)→ [101]
[010](i = 1)→ [110]
[010](i = 2) 7
[010](i = 3)→ [011]
[001](i = 1)→ [101]

14 / 53

Item
[
{0, 1}I

]
Goal

[
1I
]

Axiom

[0I]
Expand

[C]
[αi(C)]

1 ≤ i ≤ I
ci = 0̄

000

100

010

001

110

101

011

nosso

amigo

comum

amigo

comum

nosso

comum
nosso

Instantiated deductive logic program

Source: nosso1 amigo2 comum3
Axiom

[000]
Expand

[000](i = 1)→ [100]
[000](i = 2)→ [010]
[000](i = 3)→ [001]
[100](i = 1) 7
[100](i = 2)→ [110]
[100](i = 3)→ [101]
[010](i = 1)→ [110]
[010](i = 2) 7
[010](i = 3)→ [011]
[001](i = 1)→ [101]
[001](i = 2)→ [011]

14 / 53

Item
[
{0, 1}I

]
Goal

[
1I
]

Axiom

[0I]
Expand

[C]
[αi(C)]

1 ≤ i ≤ I
ci = 0̄

000

100

010

001

110

101

011

nosso

amigo

comum

amigo

comum

nosso

comum
nosso

amigo

Instantiated deductive logic program

Source: nosso1 amigo2 comum3
Axiom

[000]
Expand

[000](i = 1)→ [100]
[000](i = 2)→ [010]
[000](i = 3)→ [001]
[100](i = 1) 7
[100](i = 2)→ [110]
[100](i = 3)→ [101]
[010](i = 1)→ [110]
[010](i = 2) 7
[010](i = 3)→ [011]
[001](i = 1)→ [101]
[001](i = 2)→ [011]
[001](i = 3) 7

14 / 53

Item
[
{0, 1}I

]
Goal

[
1I
]

Axiom

[0I]
Expand

[C]
[αi(C)]

1 ≤ i ≤ I
ci = 0̄

000

100

010

001

110

101

011

nosso

amigo

comum

amigo

comum

nosso

comum
nosso

amigo

Instantiated deductive logic program

Source: nosso1 amigo2 comum3
Axiom

[000]
Expand

[000](i = 1)→ [100]
[000](i = 2)→ [010]
[000](i = 3)→ [001]
[100](i = 2)→ [110]
[100](i = 3)→ [101]
[010](i = 1)→ [110]
[010](i = 3)→ [011]
[001](i = 1)→ [101]
[001](i = 2)→ [011]

14 / 53

Item
[
{0, 1}I

]
Goal

[
1I
]

Axiom

[0I]
Expand

[C]
[αi(C)]

1 ≤ i ≤ I
ci = 0̄

000

100

010

001

110

101

011

nosso

amigo

comum

amigo

comum

nosso

comum
nosso

amigo

Instantiated deductive logic program

Source: nosso1 amigo2 comum3
Axiom

[000]
Expand

[000](i = 1)→ [100]
[000](i = 2)→ [010]
[000](i = 3)→ [001]
[100](i = 2)→ [110]
[100](i = 3)→ [101]
[010](i = 1)→ [110]
[010](i = 3)→ [011]
[001](i = 1)→ [101]
[001](i = 2)→ [011]
[110](i = 3)→ [111]

14 / 53

Item
[
{0, 1}I

]
Goal

[
1I
]

Axiom

[0I]
Expand

[C]
[αi(C)]

1 ≤ i ≤ I
ci = 0̄

000

100

010

001

110

101

011

111

nosso

amigo

comum

amigo

comum

nosso

comum
nosso

amigo

comum

Instantiated deductive logic program

Source: nosso1 amigo2 comum3
Axiom

[000]
Expand

[000](i = 1)→ [100]
[000](i = 2)→ [010]
[000](i = 3)→ [001]
[100](i = 2)→ [110]
[100](i = 3)→ [101]
[010](i = 1)→ [110]
[010](i = 3)→ [011]
[001](i = 1)→ [101]
[001](i = 2)→ [011]
[110](i = 3)→ [111]
[101](i = 2)→ [111]

14 / 53

Item
[
{0, 1}I

]
Goal

[
1I
]

Axiom

[0I]
Expand

[C]
[αi(C)]

1 ≤ i ≤ I
ci = 0̄

000

100

010

001

110

101

011

111

nosso

amigo

comum

amigo

comum

nosso

comum
nosso

amigo

comum

amigo

Instantiated deductive logic program

Source: nosso1 amigo2 comum3
Axiom

[000]
Expand

[000](i = 1)→ [100]
[000](i = 2)→ [010]
[000](i = 3)→ [001]
[100](i = 2)→ [110]
[100](i = 3)→ [101]
[010](i = 1)→ [110]
[010](i = 3)→ [011]
[001](i = 1)→ [101]
[001](i = 2)→ [011]
[110](i = 3)→ [111]
[101](i = 2)→ [111]
[011](i = 1)→ [111]

14 / 53

Item
[
{0, 1}I

]
Goal

[
1I
]

Axiom

[0I]
Expand

[C]
[αi(C)]

1 ≤ i ≤ I
ci = 0̄

000

100

010

001

110

101

011

111

nosso

amigo

comum

amigo

comum

nosso

comum
nosso

amigo

comum

amigo

nosso

Instantiated deductive logic program
Source: nosso1 amigo2 comum3
Axiom

[000]
Expand

[000](i = 1)→ [100]
[000](i = 2)→ [010]
[000](i = 3)→ [001]
[100](i = 2)→ [110]
[100](i = 3)→ [101]
[010](i = 1)→ [110]
[010](i = 3)→ [011]
[001](i = 1)→ [101]
[001](i = 2)→ [011]
[110](i = 3)→ [111]
[101](i = 2)→ [111]
[011](i = 1)→ [111]

Goal
[111]

14 / 53

Item
[
{0, 1}I

]
Goal

[
1I
]

Axiom

[0I]
Expand

[C]
[αi(C)]

1 ≤ i ≤ I
ci = 0̄

000

100

010

001

110

101

011

111

nosso

amigo

comum

amigo

comum

nosso

comum
nosso

amigo

comum

amigo

nosso

Word replacement with unconstrained reordering

15 / 53

Source: nosso amigo comum

1. arbitrary permutations: O(2I) states

2. intersection with the rule set: O(tI 2I) transitions

Word replacement with unconstrained reordering

15 / 53

000

100

010

001

110

101

011

111

nosso

amigo

comum

amigo

comum
comum

nosso

comum
nosso

amigo

amigo

nosso

Source: nosso amigo comum

1. arbitrary permutations: O(2I) states

2. intersection with the rule set: O(tI 2I) transitions

Word replacement with unconstrained reordering

15 / 53

000

100

010

001

110

101

011

111

our
ours

mate

friend

usual
mutual

ordinary
common

friend
mate

usual
mutual

ordinary
common

usualmutualordinary
common

our

ours

usual
mutual

ordinarycommon

our
ours

friend

mate

friend

mate

our

ours

Source: nosso amigo comum

1. arbitrary permutations: O(2I) states

2. intersection with the rule set: O(tI 2I) transitions

Problem!

Before we even discuss a parameterisation of the model we already
ran into a tractability issue!

I NP-complete [Knight, 1999]
I generalised TSP

Direction
I is it sensible to consider the space of all permutations?

Solution
I constrain reordering :D
I 0.o but how?

16 / 53

Problem!

Before we even discuss a parameterisation of the model we already
ran into a tractability issue!

I NP-complete [Knight, 1999]
I generalised TSP

Direction
I is it sensible to consider the space of all permutations?

Solution
I constrain reordering :D
I 0.o but how?

16 / 53

Problem!

Before we even discuss a parameterisation of the model we already
ran into a tractability issue!

I NP-complete [Knight, 1999]
I generalised TSP

Direction
I is it sensible to consider the space of all permutations?

Solution
I constrain reordering :D
I 0.o but how?

16 / 53

Problem!

Before we even discuss a parameterisation of the model we already
ran into a tractability issue!

I NP-complete [Knight, 1999]
I generalised TSP

Direction
I is it sensible to consider the space of all permutations?

Solution

I constrain reordering :D
I 0.o but how?

16 / 53

Problem!

Before we even discuss a parameterisation of the model we already
ran into a tractability issue!

I NP-complete [Knight, 1999]
I generalised TSP

Direction
I is it sensible to consider the space of all permutations?

Solution
I constrain reordering :D

I 0.o but how?

16 / 53

Problem!

Before we even discuss a parameterisation of the model we already
ran into a tractability issue!

I NP-complete [Knight, 1999]
I generalised TSP

Direction
I is it sensible to consider the space of all permutations?

Solution
I constrain reordering :D
I 0.o but how?

16 / 53

Ad-hoc distortion limit

Several flavours of distortion limit [Lopez, 2009]

I limit reordering as a function of the number of skipped words
Moses allows reordering within a window of length d

I starting from the leftmost uncovered word

17 / 53

Ad-hoc distortion limit

Several flavours of distortion limit [Lopez, 2009]
I limit reordering as a function of the number of skipped words

Moses allows reordering within a window of length d
I starting from the leftmost uncovered word

17 / 53

Ad-hoc distortion limit

Several flavours of distortion limit [Lopez, 2009]
I limit reordering as a function of the number of skipped words

Moses allows reordering within a window of length d
I starting from the leftmost uncovered word

17 / 53

WLd (example)

Suppose d = 2 and I = 3

18 / 53

WLd (example)

Suppose d = 2 and I = 3

[1, 2]

18 / 53

WLd (example)

Suppose d = 2 and I = 3

[1, 2]

[2, 3]

1

18 / 53

WLd (example)

Suppose d = 2 and I = 3

[1, 2]

[2, 3]

[1, 6 2]

1

2

18 / 53

WLd (example)

Suppose d = 2 and I = 3

[1, 2]

[2, 3]

[1, 6 2] [3]

1

2

1

18 / 53

WLd (example)

Suppose d = 2 and I = 3

[1, 2]

[2, 3]

[1, 6 2] [3]

1

2

1

2

18 / 53

WLd (example)

Suppose d = 2 and I = 3

[1, 2]

[2, 3]

[1, 6 2] [3]

[2, 6 3]

1

2

1

2

3

18 / 53

WLd (example)

Suppose d = 2 and I = 3

[1, 2]

[2, 3]

[1, 6 2] [3]

[2, 6 3]

∅

1

2

1

2

3

2

18 / 53

WLd (example)

Suppose d = 2 and I = 3

[1, 2]

[2, 3]

[1, 6 2] [3]

[2, 6 3]

∅

1

2

1

2

3

2

3

18 / 53

WLd (example)

Suppose d = 2 and I = 3 (e.g. nosso amigo comum)

[1, 2]

[2, 3]

[1, 6 2] [3]

[2, 6 3]

∅

nosso

amigo

comum

amigo

nosso

comum

amigo

18 / 53

WLd (logic)

Item
[
[1..I + 1], {0, 1}d−1

]
Goal [I + 1,C]
Axiom

[1, 0d−1]
Adjacent

[l,C]
[l + n,C � n] i = l

where n = #1(C) + 1
Non-Adjacent

[l,C]
[l, αi

l (C)]

l < i ≤ I
δ(i, l) ≤ d
ci−l = 0̄

I O(Id2d−1) states
I O(Id2d−1) transitions

19 / 53

Word replacement with reordering constrained by WL2

Complexity: O(I 2d−1) states

[1, 2]

[2, 3]

[1, 6 2] [3]

[2, 6 3]

∅

nosso

amigo

comum

amigo

nosso

comum

amigo

20 / 53

Word replacement with reordering constrained by WL2

Complexity: O(tI 2d−1) transitions

[1, 2]

[2, 3]

[1, 6 2] [3]

[2, 6 3]

∅

our
ours

friend

mate

ordinary
mutual

common
usual

friend
mate

our

ours

usualmutual
common

ordinary

friend
mate

20 / 53

Ad-hoc distortion limit: expressiveness

Limit reordering to a fixed-length window

I convenient (linear complexity), but
I what about languages with very different syntax?

e.g. OV vs VO, head-initial vs head-final
I can we do better?

21 / 53

Ad-hoc distortion limit: expressiveness

Limit reordering to a fixed-length window
I convenient (linear complexity), but

I what about languages with very different syntax?
e.g. OV vs VO, head-initial vs head-final

I can we do better?

21 / 53

Ad-hoc distortion limit: expressiveness

Limit reordering to a fixed-length window
I convenient (linear complexity), but
I what about languages with very different syntax?

e.g. OV vs VO, head-initial vs head-final

I can we do better?

21 / 53

Ad-hoc distortion limit: expressiveness

Limit reordering to a fixed-length window
I convenient (linear complexity), but
I what about languages with very different syntax?

e.g. OV vs VO, head-initial vs head-final
I can we do better?

21 / 53

ITGs

Inversion Transduction Grammars (ITGs) [Wu, 1997]

I X → XX
direct order

I X → 〈XX〉
inverted order

I X → f /e, where (f , e) ∈ R
bilingual mappings

22 / 53

ITGs

Inversion Transduction Grammars (ITGs) [Wu, 1997]
I X → XX

direct order

I X → 〈XX〉
inverted order

I X → f /e, where (f , e) ∈ R
bilingual mappings

22 / 53

ITGs

Inversion Transduction Grammars (ITGs) [Wu, 1997]
I X → XX

direct order
I X → 〈XX〉

inverted order

I X → f /e, where (f , e) ∈ R
bilingual mappings

22 / 53

ITGs

Inversion Transduction Grammars (ITGs) [Wu, 1997]
I X → XX

direct order
I X → 〈XX〉

inverted order
I X → f /e, where (f , e) ∈ R

bilingual mappings

22 / 53

Parsing, intersection and hypergraphs

23 / 53

Source
0 1 2 3nosso amigo comum

Parsing, intersection and hypergraphs

23 / 53

Source
0 1 2 3nosso amigo comum

Grammar
X → XX
X → 〈XX〉
X → nosso
X → amigo
X → comum

Parsing, intersection and hypergraphs

23 / 53

Source
0 1 2 3nosso amigo comum

Grammar
X → XX
X → 〈XX〉
X → nosso
X → amigo
X → comum

Parsing, intersection and hypergraphs

23 / 53

Source
0 1 2 3nosso amigo comum

X

Grammar
X → XX
X → 〈XX〉
X → nosso ⇐=
X → amigo
X → comum

0X1
nosso

Parsing, intersection and hypergraphs

23 / 53

Source
0 1 2 3nosso amigo comum

X

Grammar
X → XX
X → 〈XX〉
X → nosso
X → amigo ⇐=
X → comum

0X1

1X2

nosso

amigo

Parsing, intersection and hypergraphs

23 / 53

Source
0 1 2 3nosso amigo comum

X

Grammar
X → XX
X → 〈XX〉
X → nosso
X → amigo
X → comum ⇐=

0X1

1X2

2X3

nosso

amigo

comum

Parsing, intersection and hypergraphs

23 / 53

Source
0 1 2 3nosso amigo comum

X X

X

Grammar
X → XX ⇐=
X → 〈XX〉
X → nosso
X → amigo
X → comum

0X1 0X2

1X2

2X3

nosso

amigo

comum

Parsing, intersection and hypergraphs

23 / 53

Source
0 1 2 3nosso amigo comum

X X

X

Grammar
X → XX ⇐=
X → 〈XX〉
X → nosso
X → amigo
X → comum

0X1 0X2

1X2

2X3

1X3

nosso

amigo

comum

Parsing, intersection and hypergraphs

23 / 53

Source
0 1 2 3nosso amigo comum

X

X

X

Grammar
X → XX ⇐=
X → 〈XX〉
X → nosso
X → amigo
X → comum

0X1 0X2

1X2

2X3

1X3

0X3
nosso

amigo

comum

Parsing, intersection and hypergraphs

23 / 53

Source
0 1 2 3nosso amigo comum

X

X

X

Grammar
X → XX ⇐=
X → 〈XX〉
X → nosso
X → amigo
X → comum

0X1 0X2

1X2

2X3

1X3

0X3
nosso

amigo

comum

Parsing, intersection and hypergraphs

23 / 53

Source
0 1 2 3nosso amigo comum

X X

X

Grammar
X → XX
X → 〈XX〉 ⇐=
X → nosso
X → amigo
X → comum

0X1 0X2

1X2

2X3

1X3

0X3
nosso

amigo

comum

Parsing, intersection and hypergraphs

23 / 53

Source
0 1 2 3nosso amigo comum

X X

X

Grammar
X → XX
X → 〈XX〉 ⇐=
X → nosso
X → amigo
X → comum

0X1 0X2

1X2

2X3

1X3

0X3
nosso

amigo

comum

Parsing, intersection and hypergraphs

23 / 53

Source
0 1 2 3nosso amigo comum

X

X

X

Grammar
X → XX
X → 〈XX〉 ⇐=
X → nosso
X → amigo
X → comum

0X1 0X2

1X2

2X3

1X3

0X3
nosso

amigo

comum

Parsing, intersection and hypergraphs

23 / 53

Source
0 1 2 3nosso amigo comum

X

X

X

Grammar
X → XX
X → 〈XX〉 ⇐=
X → nosso
X → amigo
X → comum

0X1 0X2

1X2

2X3

1X3

0X3
nosso

amigo

comum

Parsing, intersection and hypergraphs

23 / 53

Source
0 1 2 3nosso amigo comum

Grammar
X → XX
X → 〈XX〉
X → nosso
X → amigo
X → comum

0X1 0X2

1X2

2X3

1X3

0X3

our
ours

friend
mate

usual
mutual

common
ordinary

Parsing, intersection and hypergraphs

23 / 53

Source
0 1 2 3nosso amigo comum

Grammar
X → XX
X → 〈XX〉
X → nosso
X → amigo
X → comum

0X1 0X2

1X2

2X3

1X3

0X3

our
ours

friend
mate

usual
mutual

common
ordinary

I O(I 3) nodes
I O(tI 3) edges

Example

24 / 53

(nosso 〈amigo comum〉) → our mutual friend

0X1 0X2

1X2

2X3

1X3

0X3

our

friend

mutual

Recap 2

1. our first model of translational equivalences assumed
monotonicity

2. then we incorporated unconstrained permutations of the
input

3. to avoid NP-completeness, we constrained permutations using
a distortion limit

4. we can instead constrain permutations using an ITG

But we still perform translation word-by-word with no insertion or
deletion!

25 / 53

Recap 2

1. our first model of translational equivalences assumed
monotonicity

2. then we incorporated unconstrained permutations of the
input

3. to avoid NP-completeness, we constrained permutations using
a distortion limit

4. we can instead constrain permutations using an ITG

But we still perform translation word-by-word with no insertion or
deletion!

25 / 53

Recap 2

1. our first model of translational equivalences assumed
monotonicity

2. then we incorporated unconstrained permutations of the
input

3. to avoid NP-completeness, we constrained permutations using
a distortion limit

4. we can instead constrain permutations using an ITG

But we still perform translation word-by-word with no insertion or
deletion!

25 / 53

Recap 2

1. our first model of translational equivalences assumed
monotonicity

2. then we incorporated unconstrained permutations of the
input

3. to avoid NP-completeness, we constrained permutations using
a distortion limit

4. we can instead constrain permutations using an ITG

But we still perform translation word-by-word with no insertion or
deletion!

25 / 53

Recap 2

1. our first model of translational equivalences assumed
monotonicity

2. then we incorporated unconstrained permutations of the
input

3. to avoid NP-completeness, we constrained permutations using
a distortion limit

4. we can instead constrain permutations using an ITG

But we still perform translation word-by-word with no insertion or
deletion!

25 / 53

1-1 mappings: fail!

Source: o1 grilo2 da3 lareira4
Target: the1 cricket2 [on the]3 hearth4

26 / 53

Insertion and deletion

Implicitly modelled by moving from words to phrases

I a phrase replacement model
I operating with an ITG (or with a distortion limit)
I with no phrase-insertion or phrase-deletion
I constrained to known phrase-to-phrase bilingual mappings

(rule set)

27 / 53

Insertion and deletion

Implicitly modelled by moving from words to phrases
I a phrase replacement model

I operating with an ITG (or with a distortion limit)
I with no phrase-insertion or phrase-deletion
I constrained to known phrase-to-phrase bilingual mappings

(rule set)

27 / 53

Insertion and deletion

Implicitly modelled by moving from words to phrases
I a phrase replacement model
I operating with an ITG (or with a distortion limit)

I with no phrase-insertion or phrase-deletion
I constrained to known phrase-to-phrase bilingual mappings

(rule set)

27 / 53

Insertion and deletion

Implicitly modelled by moving from words to phrases
I a phrase replacement model
I operating with an ITG (or with a distortion limit)
I with no phrase-insertion or phrase-deletion

I constrained to known phrase-to-phrase bilingual mappings
(rule set)

27 / 53

Insertion and deletion

Implicitly modelled by moving from words to phrases
I a phrase replacement model
I operating with an ITG (or with a distortion limit)
I with no phrase-insertion or phrase-deletion
I constrained to known phrase-to-phrase bilingual mappings

(rule set)

27 / 53

Phrase mappings

Mappings of contiguous sequences of words

I learnt directly (e.g. stochastic ITGs)
I heuristically extracted from word-aligned data
I they might contain unaligned source words (deletions)
I they might contain unaligned target words (insertions)
I their words need not align monotonically

which gives us a bit of reordering power as well ;)
e.g. a loja de antiguidades/old curiosity shop

28 / 53

Phrase mappings

Mappings of contiguous sequences of words
I learnt directly (e.g. stochastic ITGs)

I heuristically extracted from word-aligned data
I they might contain unaligned source words (deletions)
I they might contain unaligned target words (insertions)
I their words need not align monotonically

which gives us a bit of reordering power as well ;)
e.g. a loja de antiguidades/old curiosity shop

28 / 53

Phrase mappings

Mappings of contiguous sequences of words
I learnt directly (e.g. stochastic ITGs)
I heuristically extracted from word-aligned data

I they might contain unaligned source words (deletions)
I they might contain unaligned target words (insertions)
I their words need not align monotonically

which gives us a bit of reordering power as well ;)
e.g. a loja de antiguidades/old curiosity shop

28 / 53

Phrase mappings

Mappings of contiguous sequences of words
I learnt directly (e.g. stochastic ITGs)
I heuristically extracted from word-aligned data
I they might contain unaligned source words (deletions)

I they might contain unaligned target words (insertions)
I their words need not align monotonically

which gives us a bit of reordering power as well ;)
e.g. a loja de antiguidades/old curiosity shop

28 / 53

Phrase mappings

Mappings of contiguous sequences of words
I learnt directly (e.g. stochastic ITGs)
I heuristically extracted from word-aligned data
I they might contain unaligned source words (deletions)
I they might contain unaligned target words (insertions)

I their words need not align monotonically
which gives us a bit of reordering power as well ;)
e.g. a loja de antiguidades/old curiosity shop

28 / 53

Phrase mappings

Mappings of contiguous sequences of words
I learnt directly (e.g. stochastic ITGs)
I heuristically extracted from word-aligned data
I they might contain unaligned source words (deletions)
I they might contain unaligned target words (insertions)
I their words need not align monotonically

which gives us a bit of reordering power as well ;)

e.g. a loja de antiguidades/old curiosity shop

28 / 53

Phrase mappings

Mappings of contiguous sequences of words
I learnt directly (e.g. stochastic ITGs)
I heuristically extracted from word-aligned data
I they might contain unaligned source words (deletions)
I they might contain unaligned target words (insertions)
I their words need not align monotonically

which gives us a bit of reordering power as well ;)
e.g. a loja de antiguidades/old curiosity shop

28 / 53

Generalising the rule set (FST)

Rules
o {the, a}
grilo {cricket, annoyance}
da {on the, of, from}
hearth {lareira}

Using FST

I each rule can be seen as a transducer
I the union represents the rule set
I standard intersection mechanisms do the rest

29 / 53

Generalising the rule set (FST)

Rules
o {the, a}
grilo {cricket, annoyance}
da {on the, of, from}
hearth {lareira}

Using FST
I each rule can be seen as a transducer

I the union represents the rule set
I standard intersection mechanisms do the rest

29 / 53

Generalising the rule set (FST)

Rules
o {the, a}
grilo {cricket, annoyance}
da {on the, of, from}
hearth {lareira}

Using FST
I each rule can be seen as a transducer

I the union represents the rule set
I standard intersection mechanisms do the rest

29 / 53

0

o:the

Generalising the rule set (FST)

Rules
o {the, a}
grilo {cricket, annoyance}
da {on the, of, from}
hearth {lareira}

Using FST
I each rule can be seen as a transducer

I the union represents the rule set
I standard intersection mechanisms do the rest

29 / 53

0

o:a

Generalising the rule set (FST)

Rules
o {the, a}
grilo {cricket, annoyance}
da {on the, of, from}
hearth {lareira}

Using FST
I each rule can be seen as a transducer

I the union represents the rule set
I standard intersection mechanisms do the rest

29 / 53

0

grilo:cricket

Generalising the rule set (FST)

Rules
o {the, a}
grilo {cricket, annoyance}
da {on the, of, from}
hearth {lareira}

Using FST
I each rule can be seen as a transducer

I the union represents the rule set
I standard intersection mechanisms do the rest

29 / 53

0

grilo:annoyance

Generalising the rule set (FST)

Rules
o {the, a}
grilo {cricket, annoyance}
da {on the, of, from}
hearth {lareira}

Using FST
I each rule can be seen as a transducer

I the union represents the rule set
I standard intersection mechanisms do the rest

29 / 53

0 1

da:on

ε:the

Generalising the rule set (FST)

Rules
o {the, a}
grilo {cricket, annoyance}
da {on the, of, from}
hearth {lareira}

Using FST
I each rule can be seen as a transducer

I the union represents the rule set
I standard intersection mechanisms do the rest

29 / 53

0

da:of

Generalising the rule set (FST)

Rules
o {the, a}
grilo {cricket, annoyance}
da {on the, of, from}
hearth {lareira}

Using FST
I each rule can be seen as a transducer

I the union represents the rule set
I standard intersection mechanisms do the rest

29 / 53

0

da:from

Generalising the rule set (FST)

Rules
o {the, a}
grilo {cricket, annoyance}
da {on the, of, from}
hearth {lareira}

Using FST
I each rule can be seen as a transducer

I the union represents the rule set
I standard intersection mechanisms do the rest

29 / 53

0

lareira:hearth

Generalising the rule set (FST)

Rules
o {the, a}
grilo {cricket, annoyance}
da {on the, of, from}
hearth {lareira}

Using FST
I each rule can be seen as a transducer
I the union represents the rule set

I standard intersection mechanisms do the rest

29 / 53

Generalising the rule set (FST)

Rules
o {the, a}
grilo {cricket, annoyance}
da {on the, of, from}
hearth {lareira}

Using FST
I each rule can be seen as a transducer
I the union represents the rule set

I standard intersection mechanisms do the rest

29 / 53

0 1

o:the
o:a
grilo:cricket
grilo:annoyance
da:of
da:from
hearth:lareira

da:on

ε:the

Generalising the rule set (FST)

Rules
o {the, a}
grilo {cricket, annoyance}
da {on the, of, from}
hearth {lareira}

Using FST
I each rule can be seen as a transducer
I the union represents the rule set
I standard intersection mechanisms do the rest

29 / 53

Phrase permutations’ translation with WLd

We can translate a lattice encoding the WLd permutations

I a truncated window controls reordering
I there is a number of different segmentations of the input

I O(I 2) segments
I it is sensible to limit phrases to a maximum length

I complexity remains
I linear with sentence length
I exponential with distortion limit

30 / 53

Phrase permutations’ translation with WLd

We can translate a lattice encoding the WLd permutations
I a truncated window controls reordering

I there is a number of different segmentations of the input
I O(I 2) segments
I it is sensible to limit phrases to a maximum length

I complexity remains
I linear with sentence length
I exponential with distortion limit

30 / 53

Phrase permutations’ translation with WLd

We can translate a lattice encoding the WLd permutations
I a truncated window controls reordering
I there is a number of different segmentations of the input

I O(I 2) segments
I it is sensible to limit phrases to a maximum length

I complexity remains
I linear with sentence length
I exponential with distortion limit

30 / 53

Phrase permutations’ translation with WLd

We can translate a lattice encoding the WLd permutations
I a truncated window controls reordering
I there is a number of different segmentations of the input

I O(I 2) segments

I it is sensible to limit phrases to a maximum length
I complexity remains

I linear with sentence length
I exponential with distortion limit

30 / 53

Phrase permutations’ translation with WLd

We can translate a lattice encoding the WLd permutations
I a truncated window controls reordering
I there is a number of different segmentations of the input

I O(I 2) segments
I it is sensible to limit phrases to a maximum length

I complexity remains
I linear with sentence length
I exponential with distortion limit

30 / 53

Phrase permutations’ translation with WLd

We can translate a lattice encoding the WLd permutations
I a truncated window controls reordering
I there is a number of different segmentations of the input

I O(I 2) segments
I it is sensible to limit phrases to a maximum length

I complexity remains
I linear with sentence length
I exponential with distortion limit

30 / 53

Generalising the rule set (ITG)
Simply extend the terminal rules

I X → XX
direct order

I X → 〈XX〉
inverted order

I X → ri , where ri ∈ R
bilingual mappings

Examples
X → o/the
X → grilo/cricket
X → da/on the

The intersection mechanisms do the rest
I O(I 3) nodes (phrases are limited in length)
I O(tI 3) edges

31 / 53

Generalising the rule set (ITG)
Simply extend the terminal rules

I X → XX
direct order

I X → 〈XX〉
inverted order

I X → ri , where ri ∈ R
bilingual mappings

Examples
X → o/the
X → grilo/cricket
X → da/on the

The intersection mechanisms do the rest
I O(I 3) nodes (phrases are limited in length)
I O(tI 3) edges

31 / 53

Generalising the rule set (ITG)
Simply extend the terminal rules

I X → XX
direct order

I X → 〈XX〉
inverted order

I X → ri , where ri ∈ R
bilingual mappings

Examples
X → o/the
X → grilo/cricket
X → da/on the

The intersection mechanisms do the rest
I O(I 3) nodes (phrases are limited in length)
I O(tI 3) edges

31 / 53

Generalising the rule set (ITG)
Simply extend the terminal rules

I X → XX
direct order

I X → 〈XX〉
inverted order

I X → ri , where ri ∈ R
bilingual mappings

Examples
X → o/the
X → grilo/cricket
X → da/on the

The intersection mechanisms do the rest
I O(I 3) nodes (phrases are limited in length)
I O(tI 3) edges

31 / 53

Generalising the rule set (ITG)
Simply extend the terminal rules

I X → XX
direct order

I X → 〈XX〉
inverted order

I X → ri , where ri ∈ R
bilingual mappings

Examples
X → o/the
X → grilo/cricket
X → da/on the

The intersection mechanisms do the rest
I O(I 3) nodes (phrases are limited in length)
I O(tI 3) edges

31 / 53

Generalising the rule set (ITG)
Simply extend the terminal rules

I X → XX
direct order

I X → 〈XX〉
inverted order

I X → ri , where ri ∈ R
bilingual mappings

Examples
X → o/the
X → grilo/cricket
X → da/on the

The intersection mechanisms do the rest
I O(I 3) nodes (phrases are limited in length)
I O(tI 3) edges

31 / 53

Recap 3

We have

1. defined different models of translational equivalence
I by translating words or phrases
I in arbitrary order
I or according to an ITG

2. efficiently represented the set of translations supported by
these models for a given input sentence

I trivially expressed in terms of intersection/composition
I a logic program can do the same

(sometimes more convenient, e.g. WLd constraints)

32 / 53

Recap 3

We have
1. defined different models of translational equivalence

I by translating words or phrases
I in arbitrary order
I or according to an ITG

2. efficiently represented the set of translations supported by
these models for a given input sentence

I trivially expressed in terms of intersection/composition
I a logic program can do the same

(sometimes more convenient, e.g. WLd constraints)

32 / 53

Recap 3

We have
1. defined different models of translational equivalence

I by translating words or phrases

I in arbitrary order
I or according to an ITG

2. efficiently represented the set of translations supported by
these models for a given input sentence

I trivially expressed in terms of intersection/composition
I a logic program can do the same

(sometimes more convenient, e.g. WLd constraints)

32 / 53

Recap 3

We have
1. defined different models of translational equivalence

I by translating words or phrases
I in arbitrary order

I or according to an ITG
2. efficiently represented the set of translations supported by

these models for a given input sentence
I trivially expressed in terms of intersection/composition
I a logic program can do the same

(sometimes more convenient, e.g. WLd constraints)

32 / 53

Recap 3

We have
1. defined different models of translational equivalence

I by translating words or phrases
I in arbitrary order
I or according to an ITG

2. efficiently represented the set of translations supported by
these models for a given input sentence

I trivially expressed in terms of intersection/composition
I a logic program can do the same

(sometimes more convenient, e.g. WLd constraints)

32 / 53

Recap 3

We have
1. defined different models of translational equivalence

I by translating words or phrases
I in arbitrary order
I or according to an ITG

2. efficiently represented the set of translations supported by
these models for a given input sentence

I trivially expressed in terms of intersection/composition
I a logic program can do the same

(sometimes more convenient, e.g. WLd constraints)

32 / 53

Recap 3

We have
1. defined different models of translational equivalence

I by translating words or phrases
I in arbitrary order
I or according to an ITG

2. efficiently represented the set of translations supported by
these models for a given input sentence

I trivially expressed in terms of intersection/composition

I a logic program can do the same
(sometimes more convenient, e.g. WLd constraints)

32 / 53

Recap 3

We have
1. defined different models of translational equivalence

I by translating words or phrases
I in arbitrary order
I or according to an ITG

2. efficiently represented the set of translations supported by
these models for a given input sentence

I trivially expressed in terms of intersection/composition
I a logic program can do the same

(sometimes more convenient, e.g. WLd constraints)

32 / 53

Remarks

Phrase-based SMT [Koehn et al., 2003]

I the space of solutions grows linearly with input length and
exponentially with the distortion limit

ITG [Wu, 1997]
I the space of solutions is cubic in length
I better motivated constraints on reordering

33 / 53

Remarks

Phrase-based SMT [Koehn et al., 2003]
I the space of solutions grows linearly with input length and

exponentially with the distortion limit

ITG [Wu, 1997]
I the space of solutions is cubic in length
I better motivated constraints on reordering

33 / 53

Remarks

Phrase-based SMT [Koehn et al., 2003]
I the space of solutions grows linearly with input length and

exponentially with the distortion limit
ITG [Wu, 1997]

I the space of solutions is cubic in length
I better motivated constraints on reordering

33 / 53

Remarks

Phrase-based SMT [Koehn et al., 2003]
I the space of solutions grows linearly with input length and

exponentially with the distortion limit
ITG [Wu, 1997]

I the space of solutions is cubic in length

I better motivated constraints on reordering

33 / 53

Remarks

Phrase-based SMT [Koehn et al., 2003]
I the space of solutions grows linearly with input length and

exponentially with the distortion limit
ITG [Wu, 1997]

I the space of solutions is cubic in length
I better motivated constraints on reordering

33 / 53

Remarks (hiero)

Hierarchical phrase-based models [Chiang, 2005]

I more general SCFG rules (typically up to 2 nonterminals)
I weakly equivalent to an ITG

(same set of pairs of strings)
I purely lexicalised rules

e.g. X → loja de antiguidades/old curiosity shop
I as well as lexicalised recursive rules

e.g. X → X1 de X2 / X2 ’s X1
I no purely unlexicalised rules1

I same cubic dependency on input length (as ITGs)

1Other than monotone translation with glue rules
34 / 53

Remarks (hiero)

Hierarchical phrase-based models [Chiang, 2005]
I more general SCFG rules (typically up to 2 nonterminals)

I weakly equivalent to an ITG
(same set of pairs of strings)

I purely lexicalised rules
e.g. X → loja de antiguidades/old curiosity shop

I as well as lexicalised recursive rules
e.g. X → X1 de X2 / X2 ’s X1

I no purely unlexicalised rules1

I same cubic dependency on input length (as ITGs)

1Other than monotone translation with glue rules
34 / 53

Remarks (hiero)

Hierarchical phrase-based models [Chiang, 2005]
I more general SCFG rules (typically up to 2 nonterminals)
I weakly equivalent to an ITG

(same set of pairs of strings)

I purely lexicalised rules
e.g. X → loja de antiguidades/old curiosity shop

I as well as lexicalised recursive rules
e.g. X → X1 de X2 / X2 ’s X1

I no purely unlexicalised rules1

I same cubic dependency on input length (as ITGs)

1Other than monotone translation with glue rules
34 / 53

Remarks (hiero)

Hierarchical phrase-based models [Chiang, 2005]
I more general SCFG rules (typically up to 2 nonterminals)
I weakly equivalent to an ITG

(same set of pairs of strings)
I purely lexicalised rules

e.g. X → loja de antiguidades/old curiosity shop

I as well as lexicalised recursive rules
e.g. X → X1 de X2 / X2 ’s X1

I no purely unlexicalised rules1

I same cubic dependency on input length (as ITGs)

1Other than monotone translation with glue rules
34 / 53

Remarks (hiero)

Hierarchical phrase-based models [Chiang, 2005]
I more general SCFG rules (typically up to 2 nonterminals)
I weakly equivalent to an ITG

(same set of pairs of strings)
I purely lexicalised rules

e.g. X → loja de antiguidades/old curiosity shop
I as well as lexicalised recursive rules

e.g. X → X1 de X2 / X2 ’s X1

I no purely unlexicalised rules1

I same cubic dependency on input length (as ITGs)

1Other than monotone translation with glue rules
34 / 53

Remarks (hiero)

Hierarchical phrase-based models [Chiang, 2005]
I more general SCFG rules (typically up to 2 nonterminals)
I weakly equivalent to an ITG

(same set of pairs of strings)
I purely lexicalised rules

e.g. X → loja de antiguidades/old curiosity shop
I as well as lexicalised recursive rules

e.g. X → X1 de X2 / X2 ’s X1
I no purely unlexicalised rules1

I same cubic dependency on input length (as ITGs)

1Other than monotone translation with glue rules
34 / 53

Remarks (hiero)

Hierarchical phrase-based models [Chiang, 2005]
I more general SCFG rules (typically up to 2 nonterminals)
I weakly equivalent to an ITG

(same set of pairs of strings)
I purely lexicalised rules

e.g. X → loja de antiguidades/old curiosity shop
I as well as lexicalised recursive rules

e.g. X → X1 de X2 / X2 ’s X1
I no purely unlexicalised rules1

I same cubic dependency on input length (as ITGs)

1Other than monotone translation with glue rules
34 / 53

What are we missing?

We have characterised the set of solutions “backed” by our
transfer model

I these solutions are unweighted
I there is no obvious way to discriminate them
I we cannot make decisions like that

We are missing a parameterisation of the model
I the scoring function which will guide the decision making

process

35 / 53

What are we missing?

We have characterised the set of solutions “backed” by our
transfer model

I these solutions are unweighted

I there is no obvious way to discriminate them
I we cannot make decisions like that

We are missing a parameterisation of the model
I the scoring function which will guide the decision making

process

35 / 53

What are we missing?

We have characterised the set of solutions “backed” by our
transfer model

I these solutions are unweighted
I there is no obvious way to discriminate them

I we cannot make decisions like that

We are missing a parameterisation of the model
I the scoring function which will guide the decision making

process

35 / 53

What are we missing?

We have characterised the set of solutions “backed” by our
transfer model

I these solutions are unweighted
I there is no obvious way to discriminate them
I we cannot make decisions like that

We are missing a parameterisation of the model
I the scoring function which will guide the decision making

process

35 / 53

What are we missing?

We have characterised the set of solutions “backed” by our
transfer model

I these solutions are unweighted
I there is no obvious way to discriminate them
I we cannot make decisions like that

We are missing a parameterisation of the model
I the scoring function which will guide the decision making

process

35 / 53

Linear models
Let’s call derivation

I a translation string
I along with any latent structure assumed by the transfer model

e.g. phrase segmentation, alignment
A linear parameterisation of the model is a function

f (d) =
∑

k
λkHk(d)

where d is the derivation, and Hk is one of m feature functions

It assigns a real-valued score to each and every derivation

Think of it as a surrogate for translation quality at decoding time
[Berger et al., 1996]

[Och and Ney, 2002]

36 / 53

Linear models
Let’s call derivation

I a translation string

I along with any latent structure assumed by the transfer model
e.g. phrase segmentation, alignment

A linear parameterisation of the model is a function

f (d) =
∑

k
λkHk(d)

where d is the derivation, and Hk is one of m feature functions

It assigns a real-valued score to each and every derivation

Think of it as a surrogate for translation quality at decoding time
[Berger et al., 1996]

[Och and Ney, 2002]

36 / 53

Linear models
Let’s call derivation

I a translation string
I along with any latent structure assumed by the transfer model

e.g. phrase segmentation, alignment

A linear parameterisation of the model is a function

f (d) =
∑

k
λkHk(d)

where d is the derivation, and Hk is one of m feature functions

It assigns a real-valued score to each and every derivation

Think of it as a surrogate for translation quality at decoding time
[Berger et al., 1996]

[Och and Ney, 2002]

36 / 53

Linear models
Let’s call derivation

I a translation string
I along with any latent structure assumed by the transfer model

e.g. phrase segmentation, alignment
A linear parameterisation of the model is a function

f (d) =
∑

k
λkHk(d)

where d is the derivation, and Hk is one of m feature functions

It assigns a real-valued score to each and every derivation

Think of it as a surrogate for translation quality at decoding time
[Berger et al., 1996]

[Och and Ney, 2002]

36 / 53

Linear models
Let’s call derivation

I a translation string
I along with any latent structure assumed by the transfer model

e.g. phrase segmentation, alignment
A linear parameterisation of the model is a function

f (d) =
∑

k
λkHk(d)

where d is the derivation, and Hk is one of m feature functions

It assigns a real-valued score to each and every derivation

Think of it as a surrogate for translation quality at decoding time
[Berger et al., 1996]

[Och and Ney, 2002]

36 / 53

Linear models
Let’s call derivation

I a translation string
I along with any latent structure assumed by the transfer model

e.g. phrase segmentation, alignment
A linear parameterisation of the model is a function

f (d) =
∑

k
λkHk(d)

where d is the derivation, and Hk is one of m feature functions

It assigns a real-valued score to each and every derivation

Think of it as a surrogate for translation quality at decoding time
[Berger et al., 1996]

[Och and Ney, 2002]

36 / 53

Feature functions

Independently capture different aspects of the translation, such as
I adequacy

I translation probabilities
I confidence on lexical choices

I fluency
I LM probabilities
I confidence on reodering

37 / 53

Independence assumptions

Our transfer model makes independence assumptions
I “translation happens by concatenating isolated rules” e.g. flat

mappings, hierarchical mappings

Certain aspects of translation quality comply with such assumptions
I how likely a certain translation rule is

e.g. relative frequency in a bilingual corpus

38 / 53

Independence assumptions

Our transfer model makes independence assumptions
I “translation happens by concatenating isolated rules” e.g. flat

mappings, hierarchical mappings

Certain aspects of translation quality comply with such assumptions
I how likely a certain translation rule is

e.g. relative frequency in a bilingual corpus

38 / 53

Structural independence: scoring rules in isolation

39 / 53

Scoring rules independently

0 1 2 3nosso amigo comum

Structural independence: scoring rules in isolation

39 / 53

Scoring rules independently

0 1 2 3
amigo comum

our/0.6

ours/0.4

Structural independence: scoring rules in isolation

39 / 53

Scoring rules independently

0 1 2 3comum
our/0.6

ours/0.4

friend/0.7

mate/0.3

Structural independence: scoring rules in isolation

39 / 53

Scoring rules independently

0 1 2 3

our/0.6

ours/0.4

friend/0.7

mate/0.3

ordinary/0.2

usual/0.4

mutual/0.1

common/0.3

Structural independence: scoring rules in isolation

39 / 53

Scoring rules independently

0 1 2 3

2′

our/0.6

ours/0.4

friend/0.7

mate/0.3

ordinary/0.2

usual/0.4

mutual/0.1

common/0.3

mutual friend/0.8

camarada/0.2

Structural independence: scoring rules in isolation

39 / 53

Scoring rules independently

0 1 2 3

2′

our/0.6

ours/0.4

friend/0.7

mate/0.3

ordinary/0.2

usual/0.4

mutual/0.1

common/0.3

mutual friend/0.8

camarada/0.2

inference runs in time linear with the size of the automaton

Independence assumptions

Our transfer model makes independence assumptions
I “translation happens by concatenating isolated rules” e.g. flat

mappings, hierarchical mappings

Certain aspects of translation quality comply with such assumptions
I how likely a certain translation rule is

e.g. relative frequency in a bilingual corpus

Certain aspects do not comply with such assumptions
I fluency as captured by an n-gram LM component

40 / 53

Independence assumptions

Our transfer model makes independence assumptions
I “translation happens by concatenating isolated rules” e.g. flat

mappings, hierarchical mappings

Certain aspects of translation quality comply with such assumptions
I how likely a certain translation rule is

e.g. relative frequency in a bilingual corpus

Certain aspects do not comply with such assumptions
I fluency as captured by an n-gram LM component

40 / 53

Scoring strings with a 2-gram LM

41 / 53

0 1 2 3 4

our/0.6

ours/0.4 mate/0.3

friend/0.7
ordinary/0.2

usual/0.4

mutual/0.1

common/0.3

EOS

requires unpacking the representation

Scoring strings with a 2-gram LM

41 / 53

0 1 2 3 4

our/0.6

ours/0.4 mate/0.3

friend/0.7
ordinary/0.2

usual/0.4

mutual/0.1

common/0.3

EOS

BOS

oour/0.6⊗ 0.06

requires unpacking the representation

Scoring strings with a 2-gram LM

41 / 53

0 1 2 3 4

our/0.6

ours/0.4 mate/0.3

friend/0.7
ordinary/0.2

usual/0.4

mutual/0.1

common/0.3

EOS

BOS

o

os

our/0.6⊗ 0.06

ours/0.4⊗ 0.03

requires unpacking the representation

Scoring strings with a 2-gram LM

41 / 53

0 1 2 3 4

our/0.6

ours/0.4 mate/0.3

friend/0.7
ordinary/0.2

usual/0.4

mutual/0.1

common/0.3

EOS

BOS

o

os

m

our/0.6⊗ 0.06

ours/0.4⊗ 0.03

mate/0.3⊗ 0.02

requires unpacking the representation

Scoring strings with a 2-gram LM

41 / 53

0 1 2 3 4

our/0.6

ours/0.4 mate/0.3

friend/0.7
ordinary/0.2

usual/0.4

mutual/0.1

common/0.3

EOS

BOS

o

os

m

f

our/0.6⊗ 0.06

ours/0.4⊗ 0.03

mate/0.3⊗ 0.02

friend/0.7⊗ 0.05

requires unpacking the representation

Scoring strings with a 2-gram LM

41 / 53

0 1 2 3 4

our/0.6

ours/0.4 mate/0.3

friend/0.7
ordinary/0.2

usual/0.4

mutual/0.1

common/0.3

EOS

BOS

o

os

m

f

or

our/0.6⊗ 0.06

ours/0.4⊗ 0.03

mate/0.3⊗ 0.02

friend/0.7⊗ 0.05

ordinary/0.2⊗ 0.0005

requires unpacking the representation

Scoring strings with a 2-gram LM

41 / 53

0 1 2 3 4

our/0.6

ours/0.4 mate/0.3

friend/0.7
ordinary/0.2

usual/0.4

mutual/0.1

common/0.3

EOS

BOS

o

os

m

f

or

uour/0.6⊗ 0.06

ours/0.4⊗ 0.03

mate/0.3⊗ 0.02

friend/0.7⊗ 0.05

ordinary/0.2⊗ 0.0005

usual/0.4⊗ 0.002

requires unpacking the representation

Scoring strings with a 2-gram LM

41 / 53

0 1 2 3 4

our/0.6

ours/0.4 mate/0.3

friend/0.7
ordinary/0.2

usual/0.4

mutual/0.1

common/0.3

EOS

BOS

o

os

m

f

or

u

mu

our/0.6⊗ 0.06

ours/0.4⊗ 0.03

mate/0.3⊗ 0.02

friend/0.7⊗ 0.05

ordinary/0.2⊗ 0.0005

usual/0.4⊗ 0.002

mutual/0.1⊗ 0.002

requires unpacking the representation

Scoring strings with a 2-gram LM

41 / 53

0 1 2 3 4

our/0.6

ours/0.4 mate/0.3

friend/0.7
ordinary/0.2

usual/0.4

mutual/0.1

common/0.3

EOS

BOS

o

os

m

f

or

u

mu

co

our/0.6⊗ 0.06

ours/0.4⊗ 0.03

mate/0.3⊗ 0.02

friend/0.7⊗ 0.05

ordinary/0.2⊗ 0.0005

usual/0.4⊗ 0.002

mutual/0.1⊗ 0.002

common/0.32⊗ 0.001

requires unpacking the representation

Scoring strings with a 2-gram LM

41 / 53

0 1 2 3 4

our/0.6

ours/0.4 mate/0.3

friend/0.7
ordinary/0.2ordinary/0.2

usual/0.4

mutual/0.1

common/0.3

EOS

BOS

o

os

m

f

or

u

mu

co

EOS

our/0.6⊗ 0.06

ours/0.4⊗ 0.03

mate/0.3⊗ 0.02

friend/0.7⊗ 0.05

ordinary/0.2⊗ 0.0005

usual/0.4⊗ 0.002

mutual/0.1⊗ 0.002

common/0.32⊗ 0.001

EOS/0.016

requires unpacking the representation

Scoring strings with a 2-gram LM

41 / 53

0 1 2 3 4

our/0.6

ours/0.4 mate/0.3

friend/0.7
ordinary/0.2

usual/0.4usual/0.4

mutual/0.1

common/0.3

EOS

BOS

o

os

m

f

or

u

mu

co

EOS

our/0.6⊗ 0.06

ours/0.4⊗ 0.03

mate/0.3⊗ 0.02

friend/0.7⊗ 0.05

ordinary/0.2⊗ 0.0005

usual/0.4⊗ 0.002

mutual/0.1⊗ 0.002

common/0.32⊗ 0.001

EOS/0.016

EOS/0.017

requires unpacking the representation

Scoring strings with a 2-gram LM

41 / 53

0 1 2 3 4

our/0.6

ours/0.4 mate/0.3

friend/0.7
ordinary/0.2

usual/0.4

mutual/0.1mutual/0.1

common/0.3

EOS

BOS

o

os

m

f

or

u

mu

co

EOS

our/0.6⊗ 0.06

ours/0.4⊗ 0.03

mate/0.3⊗ 0.02

friend/0.7⊗ 0.05

ordinary/0.2⊗ 0.0005

usual/0.4⊗ 0.002

mutual/0.1⊗ 0.002

common/0.32⊗ 0.001

EOS/0.016

EOS/0.017

EOS/0.0022

requires unpacking the representation

Scoring strings with a 2-gram LM

41 / 53

0 1 2 3 4

our/0.6

ours/0.4 mate/0.3

friend/0.7
ordinary/0.2

usual/0.4

mutual/0.1

common/0.3common/0.3

EOS

BOS

o

os

m

f

or

u

mu

co

EOS

our/0.6⊗ 0.06

ours/0.4⊗ 0.03

mate/0.3⊗ 0.02

friend/0.7⊗ 0.05

ordinary/0.2⊗ 0.0005

usual/0.4⊗ 0.002

mutual/0.1⊗ 0.002

common/0.32⊗ 0.001

EOS/0.016

EOS/0.017

EOS/0.0022

EOS/0.024

requires unpacking the representation

Scoring whole sentences

Imagine a feature function that requires a complete translation

I unbounded LM
e.g. via suffix arrays [Zhang and Vogel, 2006]
e.g. via RNN language model

I estimated overall translation quality
No factorisation at the phrase (nor n-gram) level

I requires fully unpacking the representation
I making dependencies explicit through the graphical structure

42 / 53

Scoring whole sentences

Imagine a feature function that requires a complete translation
I unbounded LM

e.g. via suffix arrays [Zhang and Vogel, 2006]
e.g. via RNN language model

I estimated overall translation quality

No factorisation at the phrase (nor n-gram) level
I requires fully unpacking the representation
I making dependencies explicit through the graphical structure

42 / 53

Scoring whole sentences

Imagine a feature function that requires a complete translation
I unbounded LM

e.g. via suffix arrays [Zhang and Vogel, 2006]
e.g. via RNN language model

I estimated overall translation quality
No factorisation at the phrase (nor n-gram) level

I requires fully unpacking the representation
I making dependencies explicit through the graphical structure

42 / 53

Scoring whole sentences

Imagine a feature function that requires a complete translation
I unbounded LM

e.g. via suffix arrays [Zhang and Vogel, 2006]
e.g. via RNN language model

I estimated overall translation quality
No factorisation at the phrase (nor n-gram) level

I requires fully unpacking the representation

I making dependencies explicit through the graphical structure

42 / 53

Scoring whole sentences

Imagine a feature function that requires a complete translation
I unbounded LM

e.g. via suffix arrays [Zhang and Vogel, 2006]
e.g. via RNN language model

I estimated overall translation quality
No factorisation at the phrase (nor n-gram) level

I requires fully unpacking the representation
I making dependencies explicit through the graphical structure

42 / 53

Scoring whole sentences: example

0

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17

one

story ’s two villages/w1

one story ’s two cities/w2

one

story ’s two towns/w3
...

...

Exhaustive enumeration

43 / 53

Not all is lost

Most features we can reliably estimate

I are rarely sensitive to global context
I are quite incremental

n-gram LMs are good examples
I there are up to |∆|n−1 contexts that must be made explicit
I nodes must group derivations sharing the same context
I polynomial, though often prohibitive (impracticable)

44 / 53

Not all is lost

Most features we can reliably estimate
I are rarely sensitive to global context

I are quite incremental
n-gram LMs are good examples

I there are up to |∆|n−1 contexts that must be made explicit
I nodes must group derivations sharing the same context
I polynomial, though often prohibitive (impracticable)

44 / 53

Not all is lost

Most features we can reliably estimate
I are rarely sensitive to global context
I are quite incremental

n-gram LMs are good examples
I there are up to |∆|n−1 contexts that must be made explicit
I nodes must group derivations sharing the same context
I polynomial, though often prohibitive (impracticable)

44 / 53

Not all is lost

Most features we can reliably estimate
I are rarely sensitive to global context
I are quite incremental

n-gram LMs are good examples
I there are up to |∆|n−1 contexts that must be made explicit

I nodes must group derivations sharing the same context
I polynomial, though often prohibitive (impracticable)

44 / 53

Not all is lost

Most features we can reliably estimate
I are rarely sensitive to global context
I are quite incremental

n-gram LMs are good examples
I there are up to |∆|n−1 contexts that must be made explicit
I nodes must group derivations sharing the same context

I polynomial, though often prohibitive (impracticable)

44 / 53

Not all is lost

Most features we can reliably estimate
I are rarely sensitive to global context
I are quite incremental

n-gram LMs are good examples
I there are up to |∆|n−1 contexts that must be made explicit
I nodes must group derivations sharing the same context
I polynomial, though often prohibitive (impracticable)

44 / 53

Recap 4

1. a characterisation the space of solutions

2. a linear parameterisation of the model
3. impact of parameterisation on packed representations

What’s left?
I more examples of models and impact on representation

I distance-based reordering
I lexicalised models
I a global feature function

I inference algorithms
I techniques to make inference feasible for interesting models

45 / 53

Recap 4

1. a characterisation the space of solutions
2. a linear parameterisation of the model

3. impact of parameterisation on packed representations

What’s left?
I more examples of models and impact on representation

I distance-based reordering
I lexicalised models
I a global feature function

I inference algorithms
I techniques to make inference feasible for interesting models

45 / 53

Recap 4

1. a characterisation the space of solutions
2. a linear parameterisation of the model
3. impact of parameterisation on packed representations

What’s left?
I more examples of models and impact on representation

I distance-based reordering
I lexicalised models
I a global feature function

I inference algorithms
I techniques to make inference feasible for interesting models

45 / 53

Recap 4

1. a characterisation the space of solutions
2. a linear parameterisation of the model
3. impact of parameterisation on packed representations

What’s left?

I more examples of models and impact on representation
I distance-based reordering
I lexicalised models
I a global feature function

I inference algorithms
I techniques to make inference feasible for interesting models

45 / 53

Recap 4

1. a characterisation the space of solutions
2. a linear parameterisation of the model
3. impact of parameterisation on packed representations

What’s left?
I more examples of models and impact on representation

I distance-based reordering
I lexicalised models
I a global feature function

I inference algorithms

I techniques to make inference feasible for interesting models

45 / 53

Recap 4

1. a characterisation the space of solutions
2. a linear parameterisation of the model
3. impact of parameterisation on packed representations

What’s left?
I more examples of models and impact on representation

I distance-based reordering
I lexicalised models
I a global feature function

I inference algorithms
I techniques to make inference feasible for interesting models

45 / 53

Picking one solution

What do we pick out of the (whole) weighted space of solutions?
I best translation
I “minimum-loss” translation

46 / 53

Best translation

MAP

y∗ = argmax
y

∑
y[d]=y

f (d|x)

I summing alternative derivations of the same string
NP-complete: related to determinisation [Sima’an, 1996]

Viterbi (approximation to MAP)

d∗ = argmax
d

f (d|x)

I assumes the most likely derivation is enough

47 / 53

Best translation

MAP

y∗ = argmax
y

∑
y[d]=y

f (d|x)

I summing alternative derivations of the same string
NP-complete: related to determinisation [Sima’an, 1996]

Viterbi (approximation to MAP)

d∗ = argmax
d

f (d|x)

I assumes the most likely derivation is enough

47 / 53

Best translation

MAP

y∗ = argmax
y

∑
y[d]=y

f (d|x)

I summing alternative derivations of the same string
NP-complete: related to determinisation [Sima’an, 1996]

Viterbi (approximation to MAP)

d∗ = argmax
d

f (d|x)

I assumes the most likely derivation is enough

47 / 53

Minimum Bayes Risk translation

MBR

I incorporates a loss (or gain) function

I assesses the risk associated with choosing any one translation
I requires the computation of expectations
I which requires a probability

p(d|x) = f (d|x)∑
d′ f (d′|x)

I can be estimated by sampling translations
I can be estimated from samples of derivations

48 / 53

Minimum Bayes Risk translation

MBR
I incorporates a loss (or gain) function

I assesses the risk associated with choosing any one translation
I requires the computation of expectations
I which requires a probability

p(d|x) = f (d|x)∑
d′ f (d′|x)

I can be estimated by sampling translations
I can be estimated from samples of derivations

48 / 53

Minimum Bayes Risk translation
MBR

I incorporates a loss (or gain) function

y = argmin
y

〈
loss(y,y′)

〉
p(y′|x)

I assesses the risk associated with choosing any one translation
I requires the computation of expectations
I which requires a probability

p(d|x) = f (d|x)∑
d′ f (d′|x)

I can be estimated by sampling translations
I can be estimated from samples of derivations

48 / 53

Minimum Bayes Risk translation
MBR

I incorporates a loss (or gain) function

y = argmax
y

〈
gain(y,y′)

〉
p(y′|x)

I assesses the risk associated with choosing any one translation
I requires the computation of expectations
I which requires a probability

p(d|x) = f (d|x)∑
d′ f (d′|x)

I can be estimated by sampling translations
I can be estimated from samples of derivations

48 / 53

Minimum Bayes Risk translation
MBR

I incorporates a loss (or gain) function

y = argmax
y

〈
BLEU(y,y′)

〉
p(y′|x)

I assesses the risk associated with choosing any one translation
I requires the computation of expectations
I which requires a probability

p(d|x) = f (d|x)∑
d′ f (d′|x)

I can be estimated by sampling translations
I can be estimated from samples of derivations

48 / 53

Minimum Bayes Risk translation
MBR

I incorporates a loss (or gain) function

y = argmax
y

〈
BLEU(y,y′)

〉
p(y′|x)

I assesses the risk associated with choosing any one translation

I requires the computation of expectations
I which requires a probability

p(d|x) = f (d|x)∑
d′ f (d′|x)

I can be estimated by sampling translations
I can be estimated from samples of derivations

48 / 53

Minimum Bayes Risk translation
MBR

I incorporates a loss (or gain) function

y = argmax
y

∑
y′

BLEU(y,y′)p(y′|x)

I assesses the risk associated with choosing any one translation
I requires the computation of expectations

I which requires a probability

p(d|x) = f (d|x)∑
d′ f (d′|x)

I can be estimated by sampling translations
I can be estimated from samples of derivations

48 / 53

Minimum Bayes Risk translation
MBR

I incorporates a loss (or gain) function

y = argmax
y

∑
y′

BLEU(y,y′)p(y′|x)

I assesses the risk associated with choosing any one translation
I requires the computation of expectations
I which requires a probability

p(d|x) = f (d|x)∑
d′ f (d′|x)

I can be estimated by sampling translations
I can be estimated from samples of derivations

48 / 53

Minimum Bayes Risk translation
MBR

I incorporates a loss (or gain) function

y = argmax
y

∑
y′∼p(y′|x)

BLEU(y,y′)

I assesses the risk associated with choosing any one translation
I requires the computation of expectations
I which requires a probability

p(d|x) = f (d|x)∑
d′ f (d′|x)

I can be estimated by sampling translations

I can be estimated from samples of derivations

48 / 53

Minimum Bayes Risk translation
MBR

I incorporates a loss (or gain) function

y = argmax
y

∑
y′

∑
d′∼p(d′|x)

BLEU(y, y[d′])

I assesses the risk associated with choosing any one translation
I requires the computation of expectations
I which requires a probability

p(d|x) = f (d|x)∑
d′ f (d′|x)

I can be estimated by sampling translations
I can be estimated from samples of derivations

48 / 53

DP-based Viterbi

Explore a truncated version of the full space

I only a budgeted set of outgoing edges form each node
I beam search: exhaustively enumerates outgoing edges, ranks

them, prunes all but k-best
I cube pruning: enumerates k edges in near best-first order

In order to compare hypotheses more fairly
I future cost estimates
I heuristic view of outside weights
I cheap dynamic program that estimates the best possible way

to complete any translation prefix
[Koehn et al., 2003]

[Chiang, 2007]

49 / 53

DP-based Viterbi

Explore a truncated version of the full space
I only a budgeted set of outgoing edges form each node

I beam search: exhaustively enumerates outgoing edges, ranks
them, prunes all but k-best

I cube pruning: enumerates k edges in near best-first order

In order to compare hypotheses more fairly
I future cost estimates
I heuristic view of outside weights
I cheap dynamic program that estimates the best possible way

to complete any translation prefix
[Koehn et al., 2003]

[Chiang, 2007]

49 / 53

DP-based Viterbi

Explore a truncated version of the full space
I only a budgeted set of outgoing edges form each node

I beam search: exhaustively enumerates outgoing edges, ranks
them, prunes all but k-best

I cube pruning: enumerates k edges in near best-first order

In order to compare hypotheses more fairly
I future cost estimates
I heuristic view of outside weights
I cheap dynamic program that estimates the best possible way

to complete any translation prefix
[Koehn et al., 2003]

[Chiang, 2007]

49 / 53

DP-based Viterbi

Explore a truncated version of the full space
I only a budgeted set of outgoing edges form each node

I beam search: exhaustively enumerates outgoing edges, ranks
them, prunes all but k-best

I cube pruning: enumerates k edges in near best-first order

In order to compare hypotheses more fairly
I future cost estimates
I heuristic view of outside weights
I cheap dynamic program that estimates the best possible way

to complete any translation prefix
[Koehn et al., 2003]

[Chiang, 2007]

49 / 53

DP-based Viterbi

Explore a truncated version of the full space
I only a budgeted set of outgoing edges form each node

I beam search: exhaustively enumerates outgoing edges, ranks
them, prunes all but k-best

I cube pruning: enumerates k edges in near best-first order

In order to compare hypotheses more fairly

I future cost estimates
I heuristic view of outside weights
I cheap dynamic program that estimates the best possible way

to complete any translation prefix
[Koehn et al., 2003]

[Chiang, 2007]

49 / 53

DP-based Viterbi

Explore a truncated version of the full space
I only a budgeted set of outgoing edges form each node

I beam search: exhaustively enumerates outgoing edges, ranks
them, prunes all but k-best

I cube pruning: enumerates k edges in near best-first order

In order to compare hypotheses more fairly
I future cost estimates

I heuristic view of outside weights
I cheap dynamic program that estimates the best possible way

to complete any translation prefix
[Koehn et al., 2003]

[Chiang, 2007]

49 / 53

DP-based Viterbi

Explore a truncated version of the full space
I only a budgeted set of outgoing edges form each node

I beam search: exhaustively enumerates outgoing edges, ranks
them, prunes all but k-best

I cube pruning: enumerates k edges in near best-first order

In order to compare hypotheses more fairly
I future cost estimates
I heuristic view of outside weights

I cheap dynamic program that estimates the best possible way
to complete any translation prefix

[Koehn et al., 2003]
[Chiang, 2007]

49 / 53

DP-based Viterbi

Explore a truncated version of the full space
I only a budgeted set of outgoing edges form each node

I beam search: exhaustively enumerates outgoing edges, ranks
them, prunes all but k-best

I cube pruning: enumerates k edges in near best-first order

In order to compare hypotheses more fairly
I future cost estimates
I heuristic view of outside weights
I cheap dynamic program that estimates the best possible way

to complete any translation prefix

[Koehn et al., 2003]
[Chiang, 2007]

49 / 53

DP-based Viterbi

Explore a truncated version of the full space
I only a budgeted set of outgoing edges form each node

I beam search: exhaustively enumerates outgoing edges, ranks
them, prunes all but k-best

I cube pruning: enumerates k edges in near best-first order

In order to compare hypotheses more fairly
I future cost estimates
I heuristic view of outside weights
I cheap dynamic program that estimates the best possible way

to complete any translation prefix
[Koehn et al., 2003]

[Chiang, 2007]

49 / 53

DP-based MBR

Uses derivations in an n-best list as samples

I arguably poor proxy to samples
I arbitrarily biased (due to pruning)
I centred around the Viterbi solution by design (due to beam

search)
[Kumar and Byrne, 2004]

[Tromble et al., 2008]

50 / 53

DP-based MBR

Uses derivations in an n-best list as samples
I arguably poor proxy to samples

I arbitrarily biased (due to pruning)
I centred around the Viterbi solution by design (due to beam

search)
[Kumar and Byrne, 2004]

[Tromble et al., 2008]

50 / 53

DP-based MBR

Uses derivations in an n-best list as samples
I arguably poor proxy to samples
I arbitrarily biased (due to pruning)

I centred around the Viterbi solution by design (due to beam
search)

[Kumar and Byrne, 2004]
[Tromble et al., 2008]

50 / 53

DP-based MBR

Uses derivations in an n-best list as samples
I arguably poor proxy to samples
I arbitrarily biased (due to pruning)
I centred around the Viterbi solution by design (due to beam

search)

[Kumar and Byrne, 2004]
[Tromble et al., 2008]

50 / 53

DP-based MBR

Uses derivations in an n-best list as samples
I arguably poor proxy to samples
I arbitrarily biased (due to pruning)
I centred around the Viterbi solution by design (due to beam

search)
[Kumar and Byrne, 2004]

[Tromble et al., 2008]

50 / 53

Sampling
Gibbs sampling

1. start with a draft translation
2. resample from posterior (not all simultaneously):

segmentation, phrase order, phrase selection
3. repeat 2

Adaptive rejection sampling
1. design a simpler upperbound (e.g. unigram LM)
2. sample from it
3. assess or reject at the complex distribution (e.g. 5-gram LM)
4. rejected samples motivate refinements of the upperbound
5. repeat 2-3 until acceptance rate is reasonable (e.g. 5-10%)

Importance sampling
I you will hear from us (project 14) ;)

51 / 53

Sampling
Gibbs sampling

1. start with a draft translation

2. resample from posterior (not all simultaneously):
segmentation, phrase order, phrase selection

3. repeat 2
Adaptive rejection sampling

1. design a simpler upperbound (e.g. unigram LM)
2. sample from it
3. assess or reject at the complex distribution (e.g. 5-gram LM)
4. rejected samples motivate refinements of the upperbound
5. repeat 2-3 until acceptance rate is reasonable (e.g. 5-10%)

Importance sampling
I you will hear from us (project 14) ;)

51 / 53

Sampling
Gibbs sampling

1. start with a draft translation
2. resample from posterior (not all simultaneously):

segmentation, phrase order, phrase selection

3. repeat 2
Adaptive rejection sampling

1. design a simpler upperbound (e.g. unigram LM)
2. sample from it
3. assess or reject at the complex distribution (e.g. 5-gram LM)
4. rejected samples motivate refinements of the upperbound
5. repeat 2-3 until acceptance rate is reasonable (e.g. 5-10%)

Importance sampling
I you will hear from us (project 14) ;)

51 / 53

Sampling
Gibbs sampling

1. start with a draft translation
2. resample from posterior (not all simultaneously):

segmentation, phrase order, phrase selection
3. repeat 2

Adaptive rejection sampling
1. design a simpler upperbound (e.g. unigram LM)
2. sample from it
3. assess or reject at the complex distribution (e.g. 5-gram LM)
4. rejected samples motivate refinements of the upperbound
5. repeat 2-3 until acceptance rate is reasonable (e.g. 5-10%)

Importance sampling
I you will hear from us (project 14) ;)

51 / 53

Sampling
Gibbs sampling

1. start with a draft translation
2. resample from posterior (not all simultaneously):

segmentation, phrase order, phrase selection
3. repeat 2

Adaptive rejection sampling

1. design a simpler upperbound (e.g. unigram LM)
2. sample from it
3. assess or reject at the complex distribution (e.g. 5-gram LM)
4. rejected samples motivate refinements of the upperbound
5. repeat 2-3 until acceptance rate is reasonable (e.g. 5-10%)

Importance sampling
I you will hear from us (project 14) ;)

51 / 53

Sampling
Gibbs sampling

1. start with a draft translation
2. resample from posterior (not all simultaneously):

segmentation, phrase order, phrase selection
3. repeat 2

Adaptive rejection sampling
1. design a simpler upperbound (e.g. unigram LM)

2. sample from it
3. assess or reject at the complex distribution (e.g. 5-gram LM)
4. rejected samples motivate refinements of the upperbound
5. repeat 2-3 until acceptance rate is reasonable (e.g. 5-10%)

Importance sampling
I you will hear from us (project 14) ;)

51 / 53

Sampling
Gibbs sampling

1. start with a draft translation
2. resample from posterior (not all simultaneously):

segmentation, phrase order, phrase selection
3. repeat 2

Adaptive rejection sampling
1. design a simpler upperbound (e.g. unigram LM)
2. sample from it

3. assess or reject at the complex distribution (e.g. 5-gram LM)
4. rejected samples motivate refinements of the upperbound
5. repeat 2-3 until acceptance rate is reasonable (e.g. 5-10%)

Importance sampling
I you will hear from us (project 14) ;)

51 / 53

Sampling
Gibbs sampling

1. start with a draft translation
2. resample from posterior (not all simultaneously):

segmentation, phrase order, phrase selection
3. repeat 2

Adaptive rejection sampling
1. design a simpler upperbound (e.g. unigram LM)
2. sample from it
3. assess or reject at the complex distribution (e.g. 5-gram LM)

4. rejected samples motivate refinements of the upperbound
5. repeat 2-3 until acceptance rate is reasonable (e.g. 5-10%)

Importance sampling
I you will hear from us (project 14) ;)

51 / 53

Sampling
Gibbs sampling

1. start with a draft translation
2. resample from posterior (not all simultaneously):

segmentation, phrase order, phrase selection
3. repeat 2

Adaptive rejection sampling
1. design a simpler upperbound (e.g. unigram LM)
2. sample from it
3. assess or reject at the complex distribution (e.g. 5-gram LM)
4. rejected samples motivate refinements of the upperbound

5. repeat 2-3 until acceptance rate is reasonable (e.g. 5-10%)
Importance sampling

I you will hear from us (project 14) ;)

51 / 53

Sampling
Gibbs sampling

1. start with a draft translation
2. resample from posterior (not all simultaneously):

segmentation, phrase order, phrase selection
3. repeat 2

Adaptive rejection sampling
1. design a simpler upperbound (e.g. unigram LM)
2. sample from it
3. assess or reject at the complex distribution (e.g. 5-gram LM)
4. rejected samples motivate refinements of the upperbound
5. repeat 2-3 until acceptance rate is reasonable (e.g. 5-10%)

Importance sampling
I you will hear from us (project 14) ;)

51 / 53

Sampling
Gibbs sampling

1. start with a draft translation
2. resample from posterior (not all simultaneously):

segmentation, phrase order, phrase selection
3. repeat 2

Adaptive rejection sampling
1. design a simpler upperbound (e.g. unigram LM)
2. sample from it
3. assess or reject at the complex distribution (e.g. 5-gram LM)
4. rejected samples motivate refinements of the upperbound
5. repeat 2-3 until acceptance rate is reasonable (e.g. 5-10%)

Importance sampling

I you will hear from us (project 14) ;)

51 / 53

Sampling
Gibbs sampling

1. start with a draft translation
2. resample from posterior (not all simultaneously):

segmentation, phrase order, phrase selection
3. repeat 2

Adaptive rejection sampling
1. design a simpler upperbound (e.g. unigram LM)
2. sample from it
3. assess or reject at the complex distribution (e.g. 5-gram LM)
4. rejected samples motivate refinements of the upperbound
5. repeat 2-3 until acceptance rate is reasonable (e.g. 5-10%)

Importance sampling
I you will hear from us (project 14) ;)

51 / 53

Sampling

Disadvantages

I hard to do it without introducing bias
I might require large number of samples

Advantages
1. broad view of distribution
2. potential to incorporate arbitrarily complex features

(at the sentence level at least)
3. sometimes unbiased
4. ideal for MBR and tuning
5. typically stupid simple to parallelise

52 / 53

Sampling

Disadvantages
I hard to do it without introducing bias

I might require large number of samples
Advantages

1. broad view of distribution
2. potential to incorporate arbitrarily complex features

(at the sentence level at least)
3. sometimes unbiased
4. ideal for MBR and tuning
5. typically stupid simple to parallelise

52 / 53

Sampling

Disadvantages
I hard to do it without introducing bias
I might require large number of samples

Advantages
1. broad view of distribution
2. potential to incorporate arbitrarily complex features

(at the sentence level at least)
3. sometimes unbiased
4. ideal for MBR and tuning
5. typically stupid simple to parallelise

52 / 53

Sampling

Disadvantages
I hard to do it without introducing bias
I might require large number of samples

Advantages

1. broad view of distribution
2. potential to incorporate arbitrarily complex features

(at the sentence level at least)
3. sometimes unbiased
4. ideal for MBR and tuning
5. typically stupid simple to parallelise

52 / 53

Sampling

Disadvantages
I hard to do it without introducing bias
I might require large number of samples

Advantages
1. broad view of distribution

2. potential to incorporate arbitrarily complex features
(at the sentence level at least)

3. sometimes unbiased
4. ideal for MBR and tuning
5. typically stupid simple to parallelise

52 / 53

Sampling

Disadvantages
I hard to do it without introducing bias
I might require large number of samples

Advantages
1. broad view of distribution
2. potential to incorporate arbitrarily complex features

(at the sentence level at least)

3. sometimes unbiased
4. ideal for MBR and tuning
5. typically stupid simple to parallelise

52 / 53

Sampling

Disadvantages
I hard to do it without introducing bias
I might require large number of samples

Advantages
1. broad view of distribution
2. potential to incorporate arbitrarily complex features

(at the sentence level at least)
3. sometimes unbiased

4. ideal for MBR and tuning
5. typically stupid simple to parallelise

52 / 53

Sampling

Disadvantages
I hard to do it without introducing bias
I might require large number of samples

Advantages
1. broad view of distribution
2. potential to incorporate arbitrarily complex features

(at the sentence level at least)
3. sometimes unbiased
4. ideal for MBR and tuning

5. typically stupid simple to parallelise

52 / 53

Sampling

Disadvantages
I hard to do it without introducing bias
I might require large number of samples

Advantages
1. broad view of distribution
2. potential to incorporate arbitrarily complex features

(at the sentence level at least)
3. sometimes unbiased
4. ideal for MBR and tuning
5. typically stupid simple to parallelise

52 / 53

Thanks!

Questions?

53 / 53

References I

Adam L. Berger, Vincent J. Della Pietra, and Stephen A. Della
Pietra. A maximum entropy approach to natural language
processing. Computational Linguistics, 22(1):39–71, March
1996. ISSN 0891-2017. URL
http://dl.acm.org/citation.cfm?id=234285.234289.

David Chiang. A hierarchical phrase-based model for statistical
machine translation. In Proceedings of the 43rd Annual Meeting
on Association for Computational Linguistics, ACL ’05, pages
263–270, Stroudsburg, PA, USA, 2005. Association for
Computational Linguistics. doi: 10.3115/1219840.1219873.
URL http://dx.doi.org/10.3115/1219840.1219873.

David Chiang. Hierarchical phrase-based translation.
Computational Linguistics, 33:201–228, 2007. URL
http://www.mitpressjournals.org/doi/abs/10.1162/
coli.2007.33.2.201.

54 / 53

http://dl.acm.org/citation.cfm?id=234285.234289
http://dx.doi.org/10.3115/1219840.1219873
http://www.mitpressjournals.org/doi/abs/10.1162/coli.2007.33.2.201
http://www.mitpressjournals.org/doi/abs/10.1162/coli.2007.33.2.201

References II

Kevin Knight. Decoding complexity in word-replacement
translation models. Comput. Linguist., 25(4):607–615,
December 1999. ISSN 0891-2017. URL
http://dl.acm.org/citation.cfm?id=973226.973232.

Philipp Koehn, Franz Josef Och, and Daniel Marcu. Statistical
phrase-based translation. In Proceedings of the 2003 Conference
of the North American Chapter of the Association for
Computational Linguistics on Human Language Technology -
Volume 1, NAACL ’03, pages 48–54, Stroudsburg, PA, USA,
2003. Association for Computational Linguistics. doi:
10.3115/1073445.1073462. URL
http://dx.doi.org/10.3115/1073445.1073462.

55 / 53

http://dl.acm.org/citation.cfm?id=973226.973232
http://dx.doi.org/10.3115/1073445.1073462

References III
Shankar Kumar and William Byrne. Minimum Bayes-risk decoding

for statistical machine translation. In Daniel Marcu
Susan Dumais and Salim Roukos, editors, HLT-NAACL 2004:
Main Proceedings, pages 169–176, Boston, Massachusetts, USA,
May 2 - May 7 2004. Association for Computational Linguistics.

Adam Lopez. Statistical machine translation. ACM Computing
Surveys, 40(3):8:1–8:49, August 2008. ISSN 0360-0300. doi:
10.1145/1380584.1380586. URL
http://doi.acm.org/10.1145/1380584.1380586.

Adam Lopez. Translation as weighted deduction. In Proceedings of
the 12th Conference of the European Chapter of the Association
for Computational Linguistics, EACL ’09, pages 532–540,
Stroudsburg, PA, USA, 2009. Association for Computational
Linguistics. URL
http://dl.acm.org/citation.cfm?id=1609067.1609126.

56 / 53

http://doi.acm.org/10.1145/1380584.1380586
http://dl.acm.org/citation.cfm?id=1609067.1609126

References IV

Franz Josef Och and Hermann Ney. Discriminative training and
maximum entropy models for statistical machine translation. In
Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics, ACL ’02, pages 295–302,
Stroudsburg, PA, USA, 2002. Association for Computational
Linguistics. doi: 10.3115/1073083.1073133. URL
http://dx.doi.org/10.3115/1073083.1073133.

Khalil Sima’an. Computational complexity of probabilistic
disambiguation by means of tree-grammars. In Proceedings of
the 16th conference on Computational linguistics - Volume 2,
COLING ’96, pages 1175–1180, Stroudsburg, PA, USA, 1996.
Association for Computational Linguistics. doi:
10.3115/993268.993392. URL
http://dx.doi.org/10.3115/993268.993392.

57 / 53

http://dx.doi.org/10.3115/1073083.1073133
http://dx.doi.org/10.3115/993268.993392

References V

Roy W. Tromble, Shankar Kumar, Franz Och, and Wolfgang
Macherey. Lattice minimum Bayes-risk decoding for statistical
machine translation. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing, EMNLP
’08, pages 620–629, Stroudsburg, PA, USA, 2008. Association
for Computational Linguistics. URL
http://dl.acm.org/citation.cfm?id=1613715.1613792.

Dekai Wu. Stochastic inversion transduction grammars and
bilingual parsing of parallel corpora. Computational Linguistics,
23(3):377–403, September 1997. ISSN 0891-2017. URL
http://dl.acm.org/citation.cfm?id=972705.972707.

Ying Zhang and Stephan Vogel. Suffix array and its applications in
empirical natural language processing. Technical report, CMU,
Pittsburgh, PA, USA, December 2006.

58 / 53

http://dl.acm.org/citation.cfm?id=1613715.1613792
http://dl.acm.org/citation.cfm?id=972705.972707

	Introduction
	Monotone word replacement models
	Reordering
	Unconstrained
	Distortion limit
	ITG

	Parameterisation
	Decision rules
	Decoding algorithms
	Appendix

