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Task

Translate a source text (e.g. sentence)
Examples:

um conto de duas cidades → a tale of two cities
nosso amigo comum → our mutual friend

a loja de antiguidades → the old curiosity shop
o grill da lareira → the cricket on the hearth
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Model of translational equivalences

Defines the space of possible translations
I think of it as a recipe to generate translations

[Lopez, 2008]

Example:
I a word replacement model
I operates in monotone left-to-right order
I with no insertions or deletions
I constrained to known word-to-word bilingual mappings

(rule set)
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Monotone word-by-word translation: solutions

Source: um conto de duas cidades
Translation rules1

um {a, some, one}
conto {tale, story, narrative, novella}
de {of, from, ’s}
duas {two, couple}
cidades {cities, towns, villages}

1Unrealistically simple
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Monotone word-by-word translation: solutions

um conto de duas cidades
a tale of two cities
a tale of two towns
a tale of two villages
a tale of couple cities
a tale of couple towns
...
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um {a, some, one}
conto {tale, story, narrative, novella}
de {of, from, ’s}
duas {two, couple}
cidades {cities, towns, villages}

This can go very far :(



Monotone word-by-word translation: complexity

Say
I the input has I words
I we know at most t translation options per source word

This makes O(tI ) solutions
Note

I WMT14’s shared task: I = 40 on average
I last I checked Moses default was t = 100

(for a more complex model)
I silly monotone word replacement model: 1080 solutions
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Space of solutions as intersection/composition
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3× 4× 3× 2× 3 = 216 solutions
I 6 states
I 3 + 4 + 3 + 2 + 3 = 15 transitions



Packing solutions with finite-state automata

Same O(tI ) solutions using
I O(I ) states
I O(tI ) transitions
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Recap 1

Model of translational equivalences
I defines the space of possible sentence pairs
I conveniently decomposes into smaller bilingual mappings

Monotone word replacement model
I easy to represent using finite-state transducers
I set of translations given by composition
I exponential number of solutions in linear space
I translates infinitely many sentences

but not nearly enough interesting cases!
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Monotone word-by-word translation: fail!
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nosso {our, ours}
amigo {friend, mate}
comum {ordinary, common, usual, mutual}

0 1 2 3
our
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friend
common

usual
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mutual

We simply cannot obtain a correct translation

our mutual friend



Reordering

Our model of translational equivalences assumes monotonicity
I a word replacement model
I operates in monotone left-to-right order
I with no insertions or deletions
I constrained to known word-to-word bilingual mappings

(rule set)
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Reordering

Not anymore!
I a word replacement model
I operates in arbitrary order
I with no insertions or deletions
I constrained to known word-to-word bilingual mappings

(rule set)
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amounting to 6× 16 = 96 solutions
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I ! permutations × tI translations
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Packing permutations

Powerset (all subsets) of {1, 2, . . . , I}
I 2I subsets

think of a vector of I bits ;)
Lattice

I O(2I ) states
I O(I × 2I ) transitions
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Deductive logic

Item
[
{0, 1}I

]
Goal

[
1I
]

Axiom

[0I ]
Expand

[C ]
[αi(C )]

1 ≤ i ≤ I
ci = 0̄

where αi(C ) is a copy of C with ci = 1̄

Template
I items → states
I deduction rules → transitions
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]
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[
1I
]

Axiom

[0I ]
Expand

[C ]
[αi(C )]

1 ≤ i ≤ I
ci = 0̄

where αi(C ) is a copy of C with ci = 1̄
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Instantiated deductive logic program

Source: nosso1 amigo2 comum3
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Problem!

Before we even discuss a parameterisation of the model we already
ran into a tractability issue!

I NP-complete [Knight, 1999]
I generalised TSP

Direction
I is it sensible to consider the space of all permutations?

Solution
I constrain reordering :D
I 0.o but how?
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Ad-hoc distortion limit

Several flavours of distortion limit [Lopez, 2009]

I limit reordering as a function of the number of skipped words
Moses allows reordering within a window of length d

I starting from the leftmost uncovered word
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WLd (example)

Suppose d = 2 and I = 3 (e.g. nosso amigo comum)

[1, 2]

[2, 3]

[1, 6 2] [3]

[2, 6 3]

∅

nosso

amigo

comum

amigo

nosso

comum

amigo
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WLd (logic)

Item
[
[1..I + 1], {0, 1}d−1

]
Goal [I + 1,C ]
Axiom

[1, 0d−1]
Adjacent

[l,C ]
[l + n,C � n] i = l

where n = #1(C ) + 1
Non-Adjacent

[l,C ]
[l, αi

l (C )]

l < i ≤ I
δ(i, l) ≤ d
ci−l = 0̄

I O(Id2d−1) states
I O(Id2d−1) transitions
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Word replacement with reordering constrained by WL2

Complexity: O(I 2d−1) states
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Word replacement with reordering constrained by WL2

Complexity: O(tI 2d−1) transitions

[1, 2]

[2, 3]

[1, 6 2] [3]

[2, 6 3]

∅

our
ours

friend
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ordinary
mutual

common
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ours

usualmutual
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mate
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Ad-hoc distortion limit: expressiveness

Limit reordering to a fixed-length window

I convenient (linear complexity), but
I what about languages with very different syntax?

e.g. OV vs VO, head-initial vs head-final
I can we do better?
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ITGs

Inversion Transduction Grammars (ITGs) [Wu, 1997]

I X → XX
direct order

I X → 〈XX〉
inverted order

I X → f /e, where (f , e) ∈ R
bilingual mappings
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Example
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(nosso 〈amigo comum〉) → our mutual friend

0X1 0X2

1X2

2X3

1X3

0X3

our

friend

mutual



Recap 2

1. our first model of translational equivalences assumed
monotonicity

2. then we incorporated unconstrained permutations of the
input

3. to avoid NP-completeness, we constrained permutations using
a distortion limit

4. we can instead constrain permutations using an ITG

But we still perform translation word-by-word with no insertion or
deletion!
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1-1 mappings: fail!

Source: o1 grilo2 da3 lareira4
Target: the1 cricket2 [on the]3 hearth4

26 / 53



Insertion and deletion

Implicitly modelled by moving from words to phrases

I a phrase replacement model
I operating with an ITG (or with a distortion limit)
I with no phrase-insertion or phrase-deletion
I constrained to known phrase-to-phrase bilingual mappings

(rule set)
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Phrase mappings

Mappings of contiguous sequences of words

I learnt directly (e.g. stochastic ITGs)
I heuristically extracted from word-aligned data
I they might contain unaligned source words (deletions)
I they might contain unaligned target words (insertions)
I their words need not align monotonically

which gives us a bit of reordering power as well ;)
e.g. a loja de antiguidades/old curiosity shop
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Generalising the rule set (FST)

Rules
o {the, a}
grilo {cricket, annoyance}
da {on the, of, from}
hearth {lareira}

Using FST

I each rule can be seen as a transducer
I the union represents the rule set
I standard intersection mechanisms do the rest

29 / 53



Generalising the rule set (FST)

Rules
o {the, a}
grilo {cricket, annoyance}
da {on the, of, from}
hearth {lareira}

Using FST
I each rule can be seen as a transducer

I the union represents the rule set
I standard intersection mechanisms do the rest

29 / 53



Generalising the rule set (FST)

Rules
o {the, a}
grilo {cricket, annoyance}
da {on the, of, from}
hearth {lareira}

Using FST
I each rule can be seen as a transducer

I the union represents the rule set
I standard intersection mechanisms do the rest

29 / 53

0

o:the



Generalising the rule set (FST)

Rules
o {the, a}
grilo {cricket, annoyance}
da {on the, of, from}
hearth {lareira}

Using FST
I each rule can be seen as a transducer

I the union represents the rule set
I standard intersection mechanisms do the rest

29 / 53

0

o:a



Generalising the rule set (FST)

Rules
o {the, a}
grilo {cricket, annoyance}
da {on the, of, from}
hearth {lareira}

Using FST
I each rule can be seen as a transducer

I the union represents the rule set
I standard intersection mechanisms do the rest

29 / 53

0

grilo:cricket



Generalising the rule set (FST)

Rules
o {the, a}
grilo {cricket, annoyance}
da {on the, of, from}
hearth {lareira}

Using FST
I each rule can be seen as a transducer

I the union represents the rule set
I standard intersection mechanisms do the rest

29 / 53

0

grilo:annoyance



Generalising the rule set (FST)

Rules
o {the, a}
grilo {cricket, annoyance}
da {on the, of, from}
hearth {lareira}

Using FST
I each rule can be seen as a transducer

I the union represents the rule set
I standard intersection mechanisms do the rest

29 / 53

0 1

da:on

ε:the



Generalising the rule set (FST)

Rules
o {the, a}
grilo {cricket, annoyance}
da {on the, of, from}
hearth {lareira}

Using FST
I each rule can be seen as a transducer

I the union represents the rule set
I standard intersection mechanisms do the rest

29 / 53

0

da:of



Generalising the rule set (FST)

Rules
o {the, a}
grilo {cricket, annoyance}
da {on the, of, from}
hearth {lareira}

Using FST
I each rule can be seen as a transducer

I the union represents the rule set
I standard intersection mechanisms do the rest

29 / 53

0

da:from



Generalising the rule set (FST)

Rules
o {the, a}
grilo {cricket, annoyance}
da {on the, of, from}
hearth {lareira}

Using FST
I each rule can be seen as a transducer

I the union represents the rule set
I standard intersection mechanisms do the rest

29 / 53

0

lareira:hearth



Generalising the rule set (FST)

Rules
o {the, a}
grilo {cricket, annoyance}
da {on the, of, from}
hearth {lareira}

Using FST
I each rule can be seen as a transducer
I the union represents the rule set

I standard intersection mechanisms do the rest

29 / 53



Generalising the rule set (FST)

Rules
o {the, a}
grilo {cricket, annoyance}
da {on the, of, from}
hearth {lareira}

Using FST
I each rule can be seen as a transducer
I the union represents the rule set

I standard intersection mechanisms do the rest

29 / 53

0 1

o:the
o:a
grilo:cricket
grilo:annoyance
da:of
da:from
hearth:lareira

da:on

ε:the



Generalising the rule set (FST)

Rules
o {the, a}
grilo {cricket, annoyance}
da {on the, of, from}
hearth {lareira}

Using FST
I each rule can be seen as a transducer
I the union represents the rule set
I standard intersection mechanisms do the rest

29 / 53



Phrase permutations’ translation with WLd

We can translate a lattice encoding the WLd permutations

I a truncated window controls reordering
I there is a number of different segmentations of the input

I O(I 2) segments
I it is sensible to limit phrases to a maximum length

I complexity remains
I linear with sentence length
I exponential with distortion limit
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Generalising the rule set (ITG)
Simply extend the terminal rules

I X → XX
direct order

I X → 〈XX〉
inverted order

I X → ri , where ri ∈ R
bilingual mappings

Examples
X → o/the
X → grilo/cricket
X → da/on the

The intersection mechanisms do the rest
I O(I 3) nodes (phrases are limited in length)
I O(tI 3) edges
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Recap 3

We have

1. defined different models of translational equivalence
I by translating words or phrases
I in arbitrary order
I or according to an ITG

2. efficiently represented the set of translations supported by
these models for a given input sentence

I trivially expressed in terms of intersection/composition
I a logic program can do the same

(sometimes more convenient, e.g. WLd constraints)
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Remarks

Phrase-based SMT [Koehn et al., 2003]

I the space of solutions grows linearly with input length and
exponentially with the distortion limit

ITG [Wu, 1997]
I the space of solutions is cubic in length
I better motivated constraints on reordering
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Remarks (hiero)

Hierarchical phrase-based models [Chiang, 2005]

I more general SCFG rules (typically up to 2 nonterminals)
I weakly equivalent to an ITG

(same set of pairs of strings)
I purely lexicalised rules

e.g. X → loja de antiguidades/old curiosity shop
I as well as lexicalised recursive rules

e.g. X → X1 de X2 / X2 ’s X1
I no purely unlexicalised rules1

I same cubic dependency on input length (as ITGs)

1Other than monotone translation with glue rules
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What are we missing?

We have characterised the set of solutions “backed” by our
transfer model

I these solutions are unweighted
I there is no obvious way to discriminate them
I we cannot make decisions like that

We are missing a parameterisation of the model
I the scoring function which will guide the decision making

process
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Linear models
Let’s call derivation

I a translation string
I along with any latent structure assumed by the transfer model

e.g. phrase segmentation, alignment
A linear parameterisation of the model is a function

f (d) =
∑

k
λkHk(d)

where d is the derivation, and Hk is one of m feature functions

It assigns a real-valued score to each and every derivation

Think of it as a surrogate for translation quality at decoding time
[Berger et al., 1996]

[Och and Ney, 2002]
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Feature functions

Independently capture different aspects of the translation, such as
I adequacy

I translation probabilities
I confidence on lexical choices

I fluency
I LM probabilities
I confidence on reodering
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Independence assumptions

Our transfer model makes independence assumptions
I “translation happens by concatenating isolated rules” e.g. flat

mappings, hierarchical mappings

Certain aspects of translation quality comply with such assumptions
I how likely a certain translation rule is

e.g. relative frequency in a bilingual corpus
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inference runs in time linear with the size of the automaton



Independence assumptions

Our transfer model makes independence assumptions
I “translation happens by concatenating isolated rules” e.g. flat

mappings, hierarchical mappings

Certain aspects of translation quality comply with such assumptions
I how likely a certain translation rule is

e.g. relative frequency in a bilingual corpus

Certain aspects do not comply with such assumptions
I fluency as captured by an n-gram LM component
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Scoring strings with a 2-gram LM
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Scoring whole sentences

Imagine a feature function that requires a complete translation

I unbounded LM
e.g. via suffix arrays [Zhang and Vogel, 2006]
e.g. via RNN language model

I estimated overall translation quality
No factorisation at the phrase (nor n-gram) level

I requires fully unpacking the representation
I making dependencies explicit through the graphical structure
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Scoring whole sentences: example

0

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17

one

story ’s two villages/w1

one story ’s two cities/w2

one

story ’s two towns/w3
...

...

Exhaustive enumeration
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Not all is lost

Most features we can reliably estimate

I are rarely sensitive to global context
I are quite incremental

n-gram LMs are good examples
I there are up to |∆|n−1 contexts that must be made explicit
I nodes must group derivations sharing the same context
I polynomial, though often prohibitive (impracticable)
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Recap 4

1. a characterisation the space of solutions

2. a linear parameterisation of the model
3. impact of parameterisation on packed representations

What’s left?
I more examples of models and impact on representation

I distance-based reordering
I lexicalised models
I a global feature function

I inference algorithms
I techniques to make inference feasible for interesting models
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Picking one solution

What do we pick out of the (whole) weighted space of solutions?
I best translation
I “minimum-loss” translation

46 / 53



Best translation

MAP

y∗ = argmax
y

∑
y[d]=y

f (d|x)

I summing alternative derivations of the same string
NP-complete: related to determinisation [Sima’an, 1996]

Viterbi (approximation to MAP)

d∗ = argmax
d

f (d|x)

I assumes the most likely derivation is enough
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Minimum Bayes Risk translation

MBR

I incorporates a loss (or gain) function

I assesses the risk associated with choosing any one translation
I requires the computation of expectations
I which requires a probability

p(d|x) = f (d|x)∑
d′ f (d′|x)

I can be estimated by sampling translations
I can be estimated from samples of derivations
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DP-based Viterbi

Explore a truncated version of the full space

I only a budgeted set of outgoing edges form each node
I beam search: exhaustively enumerates outgoing edges, ranks

them, prunes all but k-best
I cube pruning: enumerates k edges in near best-first order

In order to compare hypotheses more fairly
I future cost estimates
I heuristic view of outside weights
I cheap dynamic program that estimates the best possible way

to complete any translation prefix
[Koehn et al., 2003]

[Chiang, 2007]
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DP-based MBR

Uses derivations in an n-best list as samples

I arguably poor proxy to samples
I arbitrarily biased (due to pruning)
I centred around the Viterbi solution by design (due to beam

search)
[Kumar and Byrne, 2004]

[Tromble et al., 2008]
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Sampling
Gibbs sampling

1. start with a draft translation
2. resample from posterior (not all simultaneously):

segmentation, phrase order, phrase selection
3. repeat 2

Adaptive rejection sampling
1. design a simpler upperbound (e.g. unigram LM)
2. sample from it
3. assess or reject at the complex distribution (e.g. 5-gram LM)
4. rejected samples motivate refinements of the upperbound
5. repeat 2-3 until acceptance rate is reasonable (e.g. 5-10%)

Importance sampling
I you will hear from us (project 14) ;)
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Sampling

Disadvantages

I hard to do it without introducing bias
I might require large number of samples

Advantages
1. broad view of distribution
2. potential to incorporate arbitrarily complex features

(at the sentence level at least)
3. sometimes unbiased
4. ideal for MBR and tuning
5. typically stupid simple to parallelise
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Thanks!

Questions?
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