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Why generative models?
Deep Learning

pro Rich non-linear models for classification and sequence
prediction.

pro Scalable learning using stochastic approximation and
conceptually simple.

con Only point estimates.
con Hard to score models, do selection and complexity

penalisation.

Probabilistic modelling

pro Unified framework for model building, inference, prediction
and decision making.

pro Explicit accounting for uncertainty and variability of
predictions.

pro Robust to over-fitting.
pro Offers tools for model selection and composition.
con Potentially intractable inference,
con computationally expensive
con long simulation time.
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Why generative models?

I Lack of training data.

I Partial supervision.

I Lack of inductive bias.
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PGM

I Inference in graphical models is the problem of computing a
conditional probability distribution over the values of some of
the nodes.

I We also want to compute marginal probabilities in graphical
models, in particular the probability of the observed evidence.

I A latent variable model is a probabilistic model over observed
and latent random variables.

I For a latent variable we do not have any observations.
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IBM 1-2

Latent alignment

I Count-based models with EM is attempting to find the
maximum-likelihood estimates for the data.

I Feature-rich Models (NN to combine features).

I Bayesian parametrisation of IBM.
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IBM1: incomplete-data likelihood

f

a

m

el0

l

m

S

Incomplete-data likelihood

p(fm1 |el0) =
l∑

a1=0

· · ·
l∑

am=0

p(fm1 , a
m
1 |eaj ) (1)

=

l∑
a1=0

· · ·
l∑

am=0

n∏
j=1

p(aj |l,m)p(fj |eaj ) (2)

=

n∏
j=1

l∑
aj=0

p(aj |l,m)p(fj |eaj ) (3)
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IBM1: posterior

Posterior

p(am1 |fm1 , el0) =
p(fm1 , a

m
1 |el0)

p(fm1 |el0)
(4)

Factorised

p(aj |fm1 , el0) =
p(aj |l,m)p(fj |eaj )∑l
i=0 p(i|l,m)p(fj |ei)

(5)
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MLE via EM

E-step:

E[n(e→ f|am1 )] =

l∑
a1=0

· · ·
l∑

am=0

p(am1 |fm1 , el0)n(e→ f|Am1 ) (6)

=

l∑
a1=0

· · ·
l∑

am=0

m∏
j=1

p(aj |fm1 , el0)1e(eaj )1f(fj) (7)

=

m∏
j=1

l∑
i=0

p(aj = i|fm1 , el0)1e(ei)1f(fj) (8)

M-step:

θe,f =
E[n(e→ f |am1 )]∑
f ′ E[n(e→ f ′|am1 )]

(9)
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IBM 1-2: strong assumptions

Independence assumptions

I p(a|m,n) does not depend on lexical choices
a1 cute2 house3 ↔ una1 casa3 bella2

a1 cosy2 house3 ↔ una1 casa3 confortable2
I p(f |e) can only reasonably explain one-to-one alignments

I will be leaving soon ↔ voy a salir pronto

Parameterisation

I categorical events are unrelated
prefixes/suffixes: normal, normally, abnormally, . . .
verb inflections: comer, comi, comia, comio, . . .
gender/number: gato, gatos, gata, gatas, . . .
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Berg-Kirkpatrick et al. [2010]

Lexical distribution in IBM model 1

p(f |e) =
exp(w>lexhlex(e, f))∑
f ′ exp(w

>
lexhlex(e, f

′))
(10)

Features

I f ∈ VF is a French word (decision), e ∈ VE is an English word
(conditioning context), w ∈ Rd is the parameter vector, and
h : VF × VE → Rd is a feature vector function.

I prefixes/suffixes

I character n-grams

I POS tags

I Learning using these combination features, e.g. neural
networks

11 / 30



Neural IBM

I fθ(e) = softmax(WtHE(e) + bt) note that the softmax is
necessary to make tθ produce valid parameters for the
categorical distribution
Wt ∈ R|VF |×dh and bt ∈ R|VF |
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MLE

I We still need to be able to express the functional form of the
likelihood.

I Let us then express the log-likelihood (which is the objective
we maximise in MLE) of a single sentence pair as a function
of our free parameters:

L(θ|em0 , fn1 ) = log pθ(f
m
1 |el0) (11)

I p(f |e) =
∏
j p(fj |e) =

∏
j

∑
aj
p(aj |m, l)p(fj |eaj )

I Note that in fact our log-likelihood is a sum of independent
terms Lj(θ|em0 , fj), thus we can characterise the contribution
of each French word in each sentence pair
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Variational Inference

I We assume that x = xn1 are observations and z = zn1 are
hidden continuous variables.
We assume additional parameters θ that are fixed.

I We interested in performing MLE learning of the parameters θ.

I This requires marginalization over the unobserved latent
variables z.

I However this integration is intractable:

pθ(x) =

∫
pθ(x|z)pθ(z)dz (12)

I We are also interested on the posterior inference for the latent
variable:

p(z|x) = p(x, z)

p(x)
(13)
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Variational Inference

I [Jordan et al., 1999] introduce a variational approximation
q(z|x) to the true posterior

I The objective is to pick a family of distributions over the
latent variables with its own variational parameters,
qφ(z)

I Then, we find the parameters that makes q close to the true
posterior

I We use q with the fitted variational parameters as a proxy for
the true posterior
e.g., to form predictions about future data or to investigate
the posterior distribution of the latent variables.
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Variational Inference
We optimise φinit in order to minimize the KL to get qφ(z) closer
to the true posterior:
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KL divergence

I We measure the closeness of two distributions with
Kullback-Leibler (KL) divergence.

I We focus KL variational inference [Blei et al., 2016], where
the KL divergence between q(z) and p(z|x) is optimised.

KL(q‖p) = Eq

[
log

q(z)

p(z|x)

]
(14)

I We can not minimize the KL divergence exactly, but we can
maximise a lower bound on the marginal likelihood.
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Evidence lower bound

I If we use the Jensens inequality applied to probability distributions.
When f is concave,
f(E[X]) ≥ E[f(X)]

I We use Jensens inequality on the log probability of the observations
This is the evidence lower bound (ELBO):

log pθ(x) = log

∫
pθ(x|z)pθ(z)dz

= log

∫
qφ(z)

qφ(z)
pθ(x|z)pθ(z)dz

= logEq
[
pθ(x|z)pθ(z)

qφ(z)

]
≥ Eq

[
log

pθ(x|z)pθ(z)
qφ(z)

]
= Eq

[
log

pθ(z)

qφ(z)

]
+ Eq [log pθ(x|z)]

= −KL (qφ(z)‖pθ(z)) + Eq [log pθ(x|z)]
= L(θ, φ|x)

(15)
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ELBO

I The objective is to do optimization of the function qφ(z) to
maximize the ELBO:

KL (qφ(z)‖pθ(z|x)) = Eq
[
log

qφ(z)

pθ(z|x)

]
= Eq [log qφ(z)− log pθ(z|x)]

= Eq
[
log qφ(z)− log

pθ(x|z)pθ(z)
pθ(x)

]
= Eq

[
log

qφ(z)

pθ(z)

]
− Eqz [log pθ(x|z)] + log pθ(x)

= −L(θ, φ|x) + log pθ(x)
(16)
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Evidence lower bound

I To denote a lower bound on the log marginal likelihood:

log pθ(x) ≥ log pθ(x)−KL (qφ(z|x)‖pθ(z|x))
= Eq [log pθ(x|z)]−KL(qφ(z|x)‖p(z))

(17)

I It lower-bounds the marginal distribution of x
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Mean Field

I We assume that the variational family factorises:

q (z0, . . . , zN ) =

N∏
i

q (zi) (18)

I This simplification make optimisation and inference with VI
tractable
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Document modelling

I Know what topics are being discussed on Twitter and by what
distribution they occur.
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Word representation
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Word representation

Generative model

I Embed words as probability densities.

I Add extra information about the context.
e.g. translations as a proxy to sense annotation.
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Natural Language Inference

Classification

I

I
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Natural Language Inference

Generative model

I Avoid over-fitting.

I Change of prior.
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Natural Language Inference

Confidence of classification

I Bayesian NN

I We place a prior distribution over the model parameters p(θ)
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Neural Machine Translation
I

I

30 / 30



Neural Machine Translation
I

I
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