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Unified framework for model building, inference, prediction
and decision making.

Explicit accounting for uncertainty and variability of
predictions.

Robust to over-fitting.

Offers tools for model selection and composition.
Potentially intractable inference,

computationally expensive

long simulation time.
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Why generative models?

» Lack of training data.
» Partial supervision.

» Lack of inductive bias.

30



PGM

» Inference in graphical models is the problem of computing a
conditional probability distribution over the values of some of
the nodes.

30



PGM

» Inference in graphical models is the problem of computing a
conditional probability distribution over the values of some of

the nodes.

» We also want to compute marginal probabilities in graphical
models, in particular the probability of the observed evidence.

30



PGM

» Inference in graphical models is the problem of computing a
conditional probability distribution over the values of some of
the nodes.

» We also want to compute marginal probabilities in graphical
models, in particular the probability of the observed evidence.

» A latent variable model is a probabilistic model over observed
and latent random variables.

30



PGM

Inference in graphical models is the problem of computing a
conditional probability distribution over the values of some of
the nodes.

We also want to compute marginal probabilities in graphical
models, in particular the probability of the observed evidence.
A latent variable model is a probabilistic model over observed
and latent random variables.

For a latent variable we do not have any observations.

30
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IBM 1-2

Latent alignment

» Count-based models with EM is attempting to find the
maximum-likelihood estimates for the data.

» Feature-rich Models (NN to combine features).

» Bayesian parametrisation of IBM.
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IBM1: incomplete-data likelihood

Incomplete-data likelihood
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IBM1: posterior

Posterior
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MLE via EM
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IBM 1-2: strong assumptions

Independence assumptions

» p(a]m,n) does not depend on lexical choices
a1 cutes houses <> unaj casag bellag
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IBM 1-2: strong assumptions

Independence assumptions

» p(alm,n) does not depend on lexical choices
a1 cutes houses <> unaj casag bellag
aj cosys houses <> unaj casag confortables

» p(fle) can only reasonably explain one-to-one alignments
I will be leaving soon <+ voy a salir pronto

Parameterisation

» categorical events are unrelated
prefixes/suffixes: normal, normally, abnormally, ...
verb inflections: comer, comi, comia, comio, ...
gender/number: gato, gatos, gata, gatas, ...
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Berg-Kirkpatrick et al. [2010]

Lexical distribution in IBM model 1

o exp(wL hiex (e, f))
p(fle) Zf’ eXP(wl—le—thX(e’ )

(10)

Features

» f € Vg is a French word (decision), e € Vg is an English word
(conditioning context), w € R? is the parameter vector, and
h: Ve x Vg — R%is a feature vector function.

v

prefixes/suffixes

v

character n-grams
PQOS tags

Learning using these combination features, e.g. neural
networks

v

v
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Neural IBM

> fo(e) = softmax(WyHg(e) + b;) note that the softmax is
necessary to make ty produce valid parameters for the

categorical distribution
W; € RIVFIxdr and b, € RIVFI
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MLE

» We still need to be able to express the functional form of the
likelihood.
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MLE

We still need to be able to express the functional form of the
likelihood.

Let us then express the log-likelihood (which is the objective
we maximise in MLE) of a single sentence pair as a function
of our free parameters:

L(Bleg', f1') = log po(f7"|ep) (11)

p(fle) = 11, p(fjle) = I1; 22q, plajlm, Dp(fileq;)

Note that in fact our log-likelihood is a sum of independent
terms L;(0|eg’, fj), thus we can characterise the contribution
of each French word in each sentence pair

13/30
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Variational Inference
» We assume that = = z' are observations and z = 2" are

hidden continuous variables.
We assume additional parameters 0 that are fixed.
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Variational Inference

» We assume that = = z' are observations and z = 2" are
hidden continuous variables.
We assume additional parameters 0 that are fixed.

» We interested in performing MLE learning of the parameters 6.

» This requires marginalization over the unobserved latent
variables z.

» However this integration is intractable:

po() = / po(e|2)po()dz (12)

» We are also interested on the posterior inference for the latent
variable:

p(ef) = 222 (13)
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Variational Inference

v

[Jordan et al., 1999] introduce a variational approximation
q(z|x) to the true posterior

The objective is to pick a family of distributions over the
latent variables with its own variational parameters,

q9(2)

Then, we find the parameters that makes ¢ close to the true
posterior

We use g with the fitted variational parameters as a proxy for
the true posterior

e.g., to form predictions about future data or to investigate
the posterior distribution of the latent variables.

16
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Variational Inference

We optimise ¢ini¢ in order to minimize the KL to get ¢4(2) closer
to the true posterior:

o 1(zlx)
/
rd
’/ KL(g(z; ") | p(z] %)

¢>:<
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KL divergence

» We measure the closeness of two distributions with
Kullback-Leibler (KL) divergence.
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KL divergence

» We measure the closeness of two distributions with
Kullback-Leibler (KL) divergence.

» We focus KL variational inference [Blei et al., 2016], where
the KL divergence between ¢(z) and p(z|z) is optimised.

p(éiTi) }

» We can not minimize the KL divergence exactly, but we can
maximise a lower bound on the marginal likelihood.

KL(qlp) = E, [1og (14)
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Evidence lower bound

> If we use the Jensens inequality applied to probability distributions.
When f is concave,

fEX]) > E[f(X)]
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Evidence lower bound

> If we use the Jensens inequality applied to probability distributions.
When f is concave,
FEX]) = E[f(X)]

> We use Jensens inequality on the log probability of the observations
This is the evidence lower bound (ELBO):

logpa(x) = 1og [ pu(e2)palz)d2

_E, {log fgzm +E, [log po(2]2)]

= — KL (g4(2)||pe(2)) + B, [log pe(z|2)]
= L(0, d|x)

19/30



ELBO

» The objective is to do optimization of the function ¢4(2) to

maximize the ELBO:

KL (

q¢(2)|Ipe(2]x))

=[E, |log

qs(2) }
po(2]7)

log g4(2) — log pg(2|x)

log g4(z) — log

log

—L(8

]
Po(x|2)p(= )]
po()
(

E,. [log pe(z|2)] + log pe(z;

%(Z)]

po(2)

, ¢|x) + log pe ()

(16)
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Evidence lower bound

» To denote a lower bound on the log marginal likelihood:

log pg(x) > log py(x) — KL (g4(z|x)|pe(z]x))
= E, [log pp(x|z)] — KL(gy(2[x)|p(2))
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Evidence lower bound

» To denote a lower bound on the log marginal likelihood:

log pg(x) > log py(x) — KL (g4(z|x)|pe(z]x))
= E, [log pp(x|z)] — KL(gy(2[x)|p(2))

> It lower-bounds the marginal distribution of z

(17)
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Mean Field

» We assume that the variational family factorises:
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Q(Zo,---,ZN)ZHQ(Zi)

(18)



Mean Field

» We assume that the variational family factorises:

N
q(z0,--.,2N) ZHQ(Zz') (18)

» This simplification make optimisation and inference with VI
tractable
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Document modelling

» Know what topics are being discussed on Twitter and by what
distribution they occur.

#0 (Obama) | #20 (Musk) | #26 (Tyson) | #35 (Trump) #43 (Bieber) | #19 (Swift)
president tesla earth will thanks tonight
obama will moon great love ts1989

america rocket just thank whatdoyoumean | taylurking
sotu just day trump2016 mean just
actonclimate model one just purpose love
time launch time cruz thank thank
work good sun hillary lol crowd
economy dragon people new good night
americans falcon space people great now
change now will makeamericagreatagain see show

24
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Word representation

The model is trained on a certain task that enables it to grasp Supervised Learning Step
patterns in language. By the end of the training process R —
BERT has language-processing abilities capable of empowering e N\
many models we later need to build and train in a supervised way. 75% Spam
' Classifier
Semi-supervised Learning Step 25% Not Spam I
o o o m— m— m— —

[ ) |
e o I I Model: . ® I
I Model: (pre-trained
C— BERT | | instep#1) BERT |
I
I

I I Email messa Class

I Dataset: Buy these pills Spam
Ww || Dataset: R o |
- Predict the masked word " Atreides, .
Ob]ecllve: Dear Mr. Atreides, please find attached. Not Spam
(langauge modeling) \ /

N\

— — m— m— o m— m— = — — m— m— — om— m— m—
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Word representation

Generative model
» Embed words as probability densities.

» Add extra information about the context.

e.g. translations as a proxy to sense annotation.

26
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Natural Language Inference

Classification

“A white dog is running through the snow”
“8 million in relief in the form of emergency housing.”

‘ - Entailment

[
> - - - Neutral
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Natural Language Inference

Classification

“A white dog is running through the snow”
“8 million in relief in the form of emergency housing.”

|

- Entailment

a
MTurk a I contrad
[
omeo .
> - - -Neutral

Generalizations

Premise: Some men and boys are playing frisbee in a grassy area.

> Entailment: People play frisbee outdoors.

27 /30



Natural Language Inference

Generative model

» Avoid over-fitting.
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Natural Language Inference

Generative model
» Avoid over-fitting.
» Change of prior.

@@ =)

|yl
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Natural Language Inference

Confidence of classification
» Bayesian NN
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Natural Language Inference

Confidence of classification
» Bayesian NN

» We place a prior distribution over the model parameters p(0)

P: group of little kids waiting for the game to start
H: group of little kids waiting for the game to end

P: group of little kids waiting for the game to start
H: group of little kids waiting for the game to finish

P: group of little kids waiting for the game to start

H: group of big kids waiting for the game to start

Breaking (Category=antonyms, Gold=Contradiction}

= end
= finish
o @ == big
e
]
o ]
o
o o
E N C c ENC
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Neural Machine Translation

h® [

GCN

I

*PAD* The monkey eats a banana *PAD*
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Neural Machine Translation

h® |

§ h® |

*PAD* The monkey eats a banana
(oo
i 7 1

I 2

E[ Graph Sampler ]L»}

D v D
:[ BILSTM ] 1[ Encoder ]:
! | !

Graph Convolution

(—

> Graph component Translation component

I

*PAD*
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