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Discriminative embedding models
word2vec

In the event of a chemical spill, most children know they should
evacuate as advised by people in charge.

Place words in Rd as to answer questions like

“Have I seen this word in this context?”
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Discriminative embedding models
word2vec

In the event of a chemical spill, most children know they should
evacuate as advised by people in charge.

Place words in Rd as to answer questions like

“Have I seen this word in this context?”

Fit a binary classifier

positive examples

negative examples
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CoVe

[McCann et al., 2017] Contextual Word Vectors are word
embeddings learned by using the encoder from seq2seq with
attention.

NMT [Bahdanau et al., 2015] model is composed of a
bi-LSTM encoder and an attentional LSTM decoder.

Trained on the English-German translation task.

The encoder learns the embedding vectors of English words to
translate them into German.
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Motivation: The encoder captures high-level semantic and
syntactic meanings.
The encoder output is used on various downstream NLP tasks.
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CoVe(x) = biLSTM (GloVe (x))

Concatenation of GloVe and CoVe for question-answering.

GloVe learns from word co-occurrences no sentence context,

CoVe is generated by processing text sequences is able to
capture the contextual information.

Limitation use of parallel training data
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ELMo

Embeddings from Language Model [Peters et al., 2018] learns
contextualized word embeddings with a language model.

Bidirectional Language Model biLM.
Input is a sequence of n words, (x1, . . . , xn), the language
model learns to predict the probability of

The forward contains words before the target:
p (x1, . . . , xn) =

∏n
i=1 p (xi |x1, . . . , xi−1)

The backward contains words after the target:
p (x1, . . . , xn) =

∏n
i=1 p (xi |xi+1, . . . , xn)
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ELMo

Predictions from multi-layer LSTMs with hidden states
−→
h i,l and

←−
h i,l for

input xi .

Final layer hidden state hi,L = [
−→
h i,L;

←−
h i,L] is used to output the

probabilities over words.

Share the embedding layer and the softmax layer, parameterized by Θe

and Θs respectively.

Objective negative log likelihood in both directions:
L = −

∑n
i=1 (log p (xi |x1, . . . , xi−1; Θe ,ΘfwLSTM,Θs) +

log p (xi |xi+1, . . . , xn; Θe ,ΘbwLSTM,Θs))
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The top of a L-layer biLM, stacks all the hidden states across
layers.
The hidden state representation for xi contains 2L + 1 vectors:

Ri = {hi ,`|` = 0, . . . , L} where h0,l is the embedding layer

output and hi ,L = [
−→
h i ,l ;
←−
h i ,l ].

The weights, st task are learned for each end task The scaling
factor γt is used to correct the misalignment between the
distribution of biLM hidden states and the distribution of task
specific representations.
vi = f (Ri ; Θt) = γt

∑L
`=0 s

t
i hi ,`
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To evaluate what information is captured by hidden states
across different layers use on semantic and syntax tasks
respectively with representations in different layers of biLM:

Semantic task: The word sense disambiguation (WSD)
predict the meaning of a word given a context.
The biLM top layer is better at this task than the first layer.

Syntax task: The part-of-speech (POS) tagging task aims to
infer the grammatical role of a word in one sentence.
A higher accuracy can be achieved by using the biLM first
layer than the top layer.
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GPT

Generative Pre-training Transformer [Radford, 2018] is a
much larger LM.

GPT is a multi-layer transformer decoder.

GPT fine-tunes the same base model for all end tasks.

Transformer Decoder:
The model avoids the encoder part, only one single input
sentence rather than source and target sequences.
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GPT

Each block contains a masked multi-headed self-attention
[Vaswani et al., 2017] layer and a feed-forward layer.
The final output produces a distribution over target words.

The loss is the log-likelihood LM, but without backward
computation.
LLM = −

∑
i log p (xi |xi−k , . . . , xi−1)

Byte Pair Encoding (BPE) [Sennrich et al., 2015] over the
input sequences. Motivation that rare and unknown words can
be decomposed into multiple subwords. BPE finds the best
word segmentation by iteratively and greedily merging
frequent pairs of characters.

Supervised Fine-Tuning use the pre-trained language model
directly

Rios DGM4NLP 12 / 52



Word embeddings
EmbedAlign

EmbedAlign-2
References
References

GPT

Each block contains a masked multi-headed self-attention
[Vaswani et al., 2017] layer and a feed-forward layer.
The final output produces a distribution over target words.

The loss is the log-likelihood LM, but without backward
computation.
LLM = −

∑
i log p (xi |xi−k , . . . , xi−1)

Byte Pair Encoding (BPE) [Sennrich et al., 2015] over the
input sequences. Motivation that rare and unknown words can
be decomposed into multiple subwords. BPE finds the best
word segmentation by iteratively and greedily merging
frequent pairs of characters.

Supervised Fine-Tuning use the pre-trained language model
directly

Rios DGM4NLP 12 / 52



Word embeddings
EmbedAlign

EmbedAlign-2
References
References

GPT

Each block contains a masked multi-headed self-attention
[Vaswani et al., 2017] layer and a feed-forward layer.
The final output produces a distribution over target words.

The loss is the log-likelihood LM, but without backward
computation.
LLM = −

∑
i log p (xi |xi−k , . . . , xi−1)

Byte Pair Encoding (BPE) [Sennrich et al., 2015] over the
input sequences. Motivation that rare and unknown words can
be decomposed into multiple subwords. BPE finds the best
word segmentation by iteratively and greedily merging
frequent pairs of characters.

Supervised Fine-Tuning use the pre-trained language model
directly

Rios DGM4NLP 12 / 52



Word embeddings
EmbedAlign

EmbedAlign-2
References
References

GPT

Each block contains a masked multi-headed self-attention
[Vaswani et al., 2017] layer and a feed-forward layer.
The final output produces a distribution over target words.

The loss is the log-likelihood LM, but without backward
computation.
LLM = −

∑
i log p (xi |xi−k , . . . , xi−1)

Byte Pair Encoding (BPE) [Sennrich et al., 2015] over the
input sequences. Motivation that rare and unknown words can
be decomposed into multiple subwords. BPE finds the best
word segmentation by iteratively and greedily merging
frequent pairs of characters.

Supervised Fine-Tuning use the pre-trained language model
directly

Rios DGM4NLP 12 / 52



Word embeddings
EmbedAlign

EmbedAlign-2
References
References

GPT

For example in classification, each input has n tokens,
x = (x1, . . . , xn), and labels y .

GPT processes the input sequence x by the pre-trained
transformer decoder
and the last layer output for xn is h

(n)
L .

with weight matrix Wy to predict a distribution over class
labels.

p (y |x1, . . . , xn) = Cat(softmax
(
h
(n)
L Wy

)
)
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GPT

Lcls =
∑

(x,y)∈D

log p (y |x1, . . . , xn)

LLM = −
∑
i

log p (xi |xi−k , . . . , xi−1)

L = Lcls + λLLM

(1)
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BERT

Bidirectional Encoder Representations from Transformers
[Devlin et al., 2018] trains a large language model, and then
fine-tunes on specific tasks.

The model architecture of BERT is a multi-layer bidirectional
Transformer encoder.
BERT is trained with two auxiliary tasks instead of only the
LM.
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BERT

Task1 : Mask language model (MLM)
The cloze test consist in deleting a portion of certain items,
words, or signs, where the participant replaces the missing
item.

Randomly mask 15% of tokens in each sequence with a
special placeholder [MASK],

BERT heuristics:

80% probability, replace the chosen words with [MASK],
10% probability, replace with a random word,
10% probability, keep it the same.
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BERT

Task2: Next sentence prediction
Motivation downstream tasks involve the understanding of
relationships between sentences

BERT adds another auxiliary task for training a classifier on
whether one sentence is the next sentence of the other:
Sample sentence pairs (A, B) so that:

50% of the time, B follows A;
50% of the time, B does not follow A.

The model processes both sentences and output a binary label
indicating whether B is the next sentence of A.
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indicating whether B is the next sentence of A.
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The input embedding is the sum of three parts:

WordPiece: words can be further divided into smaller sub-word
units, it is more effective to handle rare or unknown words.

Segment embeddings: sentence A embeddings and sentence B
embeddings and separated by [SEP].

Position embeddings: Positional embeddings are learned
instead of hard-coded.
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BERT

BERT fine-tuning requires the final hidden state of the special

first token [CLS], h
[CLS]
L .
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GPT-2

GPT-2 has 1.5B parameters, 10x more than the original GP
and it achieves SOTA results on 7 out of 8 NLP in a zero-shot
transfer setting without any task-specific fine-tuning.

The pre-training dataset contains 8 million Web pages
collected by crawling qualified outbound links from Reddit.

Large improvements by GPT-2 are specially noticeable on
small datasets and datasets used for measuring long-term
dependency.

Zero-Shot Transfer: All the downstream language tasks are
framed as predicting conditional probabilities and there is no
task-specific fine-tuning.
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VAE Recap

As a NN the VAE consists of an encoder, a decoder, and a
loss function.

The encoder is a NN with input x , and output latent
representation z .

The lower-dimensional space is stochastic and parametrise
qφ(z | x) which is a Gaussian probability density.

The decoder is a NN with input z , and parametrize the
probability distribution of the data.
The decoder is denoted by pθ(x | z).

The loss is the negative log-likelihood with a regulariser.
L(θ, φ|x) = Eq(z|x) [log pθ (x |z)]−KL (qφ(z |x)‖pθ(z))
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The reparametrisation trick

How to take derivatives with respect to the parameters of a
stochastic variable.

Given z sample from a distribution qφ(z | x)

The z sample is fixed, but the derivative should be nonzero.

It is possible to reparametrise samples, for example, in a
normally-distributed variable with mean µ and standard
deviation σ,

we can sample from it like this:
z = µ+ σ � ε
where ε ∼ Normal(0, I ).
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Discriminative embedding models
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In the event of a chemical spill, most children know they should
evacuate as advised by people in charge.

Limitations

Representation learning is an unsupervised problem we only
observe positive/complete context
Distributional hypothesis is strong but fails when context is
not discriminative
Word senses are collapsed into one vector



Word embeddings
EmbedAlign

EmbedAlign-2
References
References

Model
Evaluation
Conclusions and Future Work

Discriminative embedding models

Rios DGM4NLP 24 / 52

In the event of a chemical spill, most children know they should
evacuate as advised by people in charge.

Limitations

Representation learning is an unsupervised problem we only
observe positive/complete context

Distributional hypothesis is strong but fails when context is
not discriminative
Word senses are collapsed into one vector



Word embeddings
EmbedAlign

EmbedAlign-2
References
References

Model
Evaluation
Conclusions and Future Work

Discriminative embedding models

Rios DGM4NLP 24 / 52

In the event of a chemical spill, most children know they should
evacuate as advised by people in charge.

Limitations

Representation learning is an unsupervised problem we only
observe positive/complete context
Distributional hypothesis is strong but fails when context is
not discriminative

Word senses are collapsed into one vector



Word embeddings
EmbedAlign

EmbedAlign-2
References
References

Model
Evaluation
Conclusions and Future Work

Discriminative embedding models

Rios DGM4NLP 24 / 52

In the event of a chemical spill, most children know they should
evacuate as advised by people in charge.

Limitations

Representation learning is an unsupervised problem we only
observe positive/complete context
Distributional hypothesis is strong but fails when context is
not discriminative
Word senses are collapsed into one vector



Word embeddings
EmbedAlign

EmbedAlign-2
References
References

Model
Evaluation
Conclusions and Future Work

Embedalign

Rios DGM4NLP 25 / 52

Generative model to induce word representations

Learn from positive examples

Learn from richer (less ambiguous) context
Foreign text is proxy to sense supervision (Diab and Resnik,
2002)
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In the event of a chemical spill, most children know they should
evacuate as advised by people in charge.

Generative model to induce word representations

Learn from positive examples

Learn from richer (less ambiguous) context
Foreign text is proxy to sense supervision (Diab and Resnik,
2002)

En caso de un derrame de productos qúımicos, la mayoŕıa de los niños
saben que deben abandonar el lugar según lo aconsejado por las

personas a cargo.
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Generative Model
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x

y

z

a

θ

m

n

|B|



Word embeddings
EmbedAlign

EmbedAlign-2
References
References

Model
Evaluation
Conclusions and Future Work

Generative Model

Rios DGM4NLP 26 / 52

quickly evacuate the area / deje el lugar rápidamente
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Learning
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1 Read sentence

2 Predict posterior mean µi and std σi
3 Sample zi ∼ N (µi , σ

2
i )

4 Predict categorical distributions

5 Generate observations
evacuate1 the2 area3 / deje1 el2 lugar3

6 Maximise a lowerbound on likelihood
(Kingma and Welling, 2014)
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Data

Corpus Sentence pairs (million) Tokens (million)

Europarl En-Fr 1.7 42.5
Europarl En-De 1.7 43.5
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Architecture

x

embedding
128d

h: BiRNN
100d

u 
100d

f(z)

x

s 
100d

sample z
100d

g(zaj)

y

Generative 
model

Inference 
model

Rios DGM4NLP 29 / 52



Word embeddings
EmbedAlign

EmbedAlign-2
References
References

Model
Evaluation
Conclusions and Future Work

Word Alignment

The proposal will not now be implemented

Les propositions ne seront pas mises en application maintenant

Rios DGM4NLP 30 / 52
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Word Alignment

Model selection on Dev set

AER ↓
Model En-Fr En-De

IBM1 32.45 46.71
IBM2 22.61 40.11
EmbAlign 29.43± 1.84 48.09± 2.12

Rios DGM4NLP 31 / 52
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Lexical Substitution
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Lexical Substitution

Model GAP ↑ Training size

Random 30.0
SkipGram
(Melamud et al., 2015) 44.9 ukWaC-2B
BSG
(Bražinskas et al., 2017) 46.1 ukWaC-2B

En 21.31± 1.05

En-Fr 42.19± 0.57 Euro-42M
En-De 42.07± 0.47

Rios DGM4NLP 33 / 52
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Sentence Evaluation (SentEval)
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Sentence Evaluation (SentEval)

ACC ↑ ACC/F1 ↑ CORR ↑ CORR ↑
Model MR CR SUBJ MPQA SST TREC MRPC SICK-R SICK-E STS14

SkipGramEn 70.96 76.16 87.24 86.87 73.64 65.20 70.7/80.1 0.710 76.2 0.45/0.49

En 57.5 67.1 72.0 70.8 57.0 58.0 70.6/80.3 0.648 74.4 0.59/0.59
En-Fr 64.0 71.8 79.1 81.5 64.7 58.4 72.1/81.2 0.682 74.6 0.60/0.59
En-De 62.6 68.0 77.3 82.0 65.0 66.8 70.4/79.8 0.681 75.5 0.58/0.58
Combo 66.1 72.4 82.4 84.4 69.8 69.0 71.9/80.6 0.727 76.3 0.62/0.61
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ACC ↑ ACC/F1 ↑ CORR ↑ CORR ↑
Model MR CR SUBJ MPQA SST TREC MRPC SICK-R SICK-E STS14

SkipGramEn 70.96 76.16 87.24 86.87 73.64 65.20 70.7/80.1 0.710 76.2 0.45/0.49

En 57.5 67.1 72.0 70.8 57.0 58.0 70.6/80.3 0.648 74.4 0.59/0.59
En-Fr 64.0 71.8 79.1 81.5 64.7 58.4 72.1/81.2 0.682 74.6 0.60/0.59
En-De 62.6 68.0 77.3 82.0 65.0 66.8 70.4/79.8 0.681 75.5 0.58/0.58
Combo 66.1 72.4 82.4 84.4 69.8 69.0 71.9/80.6 0.727 76.3 0.62/0.61

SkipGram
(Conneau et al., 2017) 77.7 79.8 90.9 88.3 79.7 83.6 72.5/81.4 0.803 78.7 0.65/0.64
nmtEn-Fr

(Conneau et al., 2017) 64.7 70.1 84.8 81.5 - 82.8 - - - 0.42/0.43
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Conclusions

Generative training

model learns form positive examples
no need for context window

Translation data

less ambiguous embeddings
model helps with semantic tasks e.g. paraphrasing
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Open Source Code

Try pre-trained Europarl model on SentEval:
https://github.com/uva-slpl/embedalign/blob/

master/notebooks/senteval_embedalign.ipynb
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Hierarchical generative model of words and sentences by
exploiting automatically generated paraphrasing data.

Model embeds sentences and words as probability densities.

Model learns from sentence-aligned corpora by marginalisation
of latent lexical alignments.

Testing on different sentence representation benchmarks.
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EmbedAlign-2

Wieting and Gimpel (2017) port the pivoting approach in
(Bannard and Callison-Burch, 2005) for paraphrasing to NMT.
Paraphrase English sentences by translating to a foreign
language and back to English.

How to represent paraphrases that introduce syntactic
variations.

How to represent noisy automatically generated data.
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Parallel data 〈xm1 , yn1 〉 where xm1 is a sentence in original
English and yn1 is a sentence paraphrase English.

Hierarchical generative model parameterised by neural
networks.

S ∼ N (0, I )

Zi ∼ N (µ(s), σ2(s))
(2)

y z

x
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Model I

With a Gaussian distributed sentence embedding s and word
embeddings zm1 , we can marginalise collocation and alignment
components.
Latent decision is modelled with a Bernoulli trial:

p(yj |xm1 , zm1 ) = p(cj = 0)p(yj |yj−1)

+ p(cj = 1)
m∑

aj=1

p(aj |m, n)p(yj |zaj )
(3)
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Model II

Inference:

q(s, zm1 ) = qs(s)
m∏
i=1

qzi (zi ) (4)

where S ∼ N (u0, s20) and Zi ∼ N (ui , s
2
i ).

Collocation is rudimentary language model condition on
previously generated word.

Alignment identifying relationships among words in the
parallel data.
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Model III

Estimate parameters via maximisation of a lower-bound on
marginal likelihood:

log p(xm1 , y
n
1 ) ≥ E[log p(xm1 |zm1 )]

+E[log p(yj |xm1 , zm1 )]

−
m∑
i=1

E[KL(q(zi |x)‖p(z |s))]

−KL(q(s|x)‖N (0, I ))

(5)
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Evaluation

Sentence-level paraphrases PARANMT-5M with 5 million
sentences EN1-EN2.
English-French EN-FR and English-German EN-DE from
Europarl-v7.

Word Alignment

Test alignment error rate (AER) on bilingual models.
report on IBM models 1, 2 and FastAlign.

Model En-Fr ↓ En-De ↓

IBM1 0.32 0.47
IBM2 0.23 0.40
EmbedAlign 0.29± 0.02 0.48± 0.02
FastAlign 0.19 0.36

This work 0.18± 0.01 0.40± 0.01
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Evaluation

Model MR CR MPQA SUBJ SST TREC MRPC SICK-E SICK-R STS14

Baselines

ELMO 79.87 84.85 89.21 94.19 85.67 92.80 72.93/80.90 81.21 0.82/0.75 0.61/0.58
SkipGramEn1 72.11 78.20 85.51 88.82 75.56 72.20 71.54/81.02 76.16 0.75/0.66 0.44/0.48

Ours

En-Fr 66.76 71.18 85.40 82.32 67.52 70.45 71.90/80.77 75.18 0.67/0.62 0.49/0.50
En-De 66.00 72.21 85.71 81.63 67.64 70.45 71.83/80.85 75.73 0.66/0.62 0.49/0.59
En1-En2 66.88 71.59 81.80 82.97 69.14 67.30 71.33/80.36 75.62 0.72/0.66 0.53/0.52
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EmbedAlign-2

We modify alignment distribution

From IBM1 to IBM2
En-Fr 29.43 → 18.20 AER

We model word and sentence embeddings

Movie Reviews 66.10 → 70.55 ACC
Microsoft Paraphrase 71.90/80.6 → 72.93/81.27 ACC/F1
Sick R 0.727 → 0.770 CORR

We will expand the distributional context to multiple foreign
languages at once
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