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Discriminative embedding models
word2vec

In the event of a chemical spill, most children know they should
evacuate as advised by people in charge.

Place words in Rd as to answer questions like

“Have I seen this word in this context?”

Fit a binary classifier

positive examples

negative examples
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x

y

z

a

θ

m

n

|B|



Language Modelling
Variational Auto-encoder for Sentences

References
References

Recap Generative Models of Word Representation

Rios DGM4NLP 5 / 46

quickly evacuate the area / deje el lugar rápidamente
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To compute the probability of a sentence

p(x) = p (x1, x2, . . . , xn) (1)

We apply the chain rule:

p(x) =
∏
i

p (xi |x1, . . . , xi−1) (2)

We limit the history with a Markov order:
p (xi |x1, . . . , xi−1) ' p (xi |xi−4, xi−3, xi−2, xi−1)

[Jelinek and Mercer, 1980, Goodman, 2001]
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We make the Markov assumption:
p (xi |x1, . . . , xi−1) ' p (xi |xi−1)

If we do not observe the bigram p(xi |xi−1) is 0
and the probability of a sentence will be 0.

MLE

pMLE (xi |xi−1) =
count (xi−1, xi )

count (xi−1)
(5)

Laplace smoothing:

padd1 (xi |xi−1) =
count (xi−1, xi ) + 1

count (xi−1) + V
(6)
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exp w · φ(x , y)∑

y ′∈Vy
expw · φ (x , y ′)

(7)

y is the next word and Vy is the vocabulary;

x is the history;

φ is a feature function that returns an n-dimensional vector;

w are the model parameters.

Rios DGM4NLP 17 / 46



Language Modelling
Variational Auto-encoder for Sentences

References
References

Log-linear LM

p(y |x) =
exp w · φ(x , y)∑

y ′∈Vy
expw · φ (x , y ′)

(7)

y is the next word and Vy is the vocabulary;

x is the history;

φ is a feature function that returns an n-dimensional vector;

w are the model parameters.

Rios DGM4NLP 17 / 46



Language Modelling
Variational Auto-encoder for Sentences

References
References

Log-linear LM

p(y |x) =
exp w · φ(x , y)∑

y ′∈Vy
expw · φ (x , y ′)

(7)

y is the next word and Vy is the vocabulary;

x is the history;

φ is a feature function that returns an n-dimensional vector;

w are the model parameters.

Rios DGM4NLP 17 / 46



Language Modelling
Variational Auto-encoder for Sentences

References
References

Log-linear LM

p(y |x) =
exp w · φ(x , y)∑

y ′∈Vy
expw · φ (x , y ′)

(7)

y is the next word and Vy is the vocabulary;

x is the history;

φ is a feature function that returns an n-dimensional vector;

w are the model parameters.

Rios DGM4NLP 17 / 46



Language Modelling
Variational Auto-encoder for Sentences

References
References

Log-linear LM

p(y |x) =
exp w · φ(x , y)∑

y ′∈Vy
expw · φ (x , y ′)

(7)

y is the next word and Vy is the vocabulary;

x is the history;

φ is a feature function that returns an n-dimensional vector;

w are the model parameters.

Rios DGM4NLP 17 / 46



Language Modelling
Variational Auto-encoder for Sentences

References
References

Log-linear LM

n-gram features xj−1 = the and xj = puppy.

gappy n-gram features xj−2 = the and xj = puppy.

class features: xj belongs to class ABC;

gazetteer features: xj is a place name;
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With features of words and histories we can share statistical
weight

With n-grams, there is no sharing at all

We also get smoothing for free

We can add arbitrary features

We use Stochastic Gradient Descent (SGD)
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n-gram language models have proven to be effective in various
tasks

log-linear models allow us to share weights through features

maybe our history is still too limited, e.g. n-1 words

we need to find useful features
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With NN we can exploit distributed representations to allow
for statistical weight sharing.

How does it work:

1 each word is mapped to an embedding: an m-dimensional
feature vector;

2 a probability function over word sequences is expressed in
terms of these vectors;

3 we jointly learn the feature vectors and the parameters of the
probability function.

[Bengio et al., 2003]
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Feed-forward NLM

Similar words are expected to have similar feature vectors:
(dog,cat), (running,walking), (bedroom,room)

With this, probability mass is naturally transferred from (1) to
(2):

The cat is walking in the bedroom.

The dog is running in the room.

Take-away message:
The presence of only one sentence in the training data will
increase the probability of a combinatorial number of
neighbours in sentence space.
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FF-LM

Eyou,Eknow,Enothing ∈ R100

x = [Eyou; Eknow; Enothing] ∈ R300

y = W 3 tanh (W 1x + b1) + W 2x + b2
(8)
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The non-linear activation functions perform feature
combinations that a linear model cannot do;

End-to-end training on next word prediction.
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Start: predict second word from first

[Mikolov et al., 2010]
Rios DGM4NLP 27 / 46



Language Modelling
Variational Auto-encoder for Sentences

References
References

RNN NLM

RNN-LM

Start: predict second word from first

[Mikolov et al., 2010]
Rios DGM4NLP 27 / 46



Language Modelling
Variational Auto-encoder for Sentences

References
References

RNN NLM

Rios DGM4NLP 28 / 46



Language Modelling
Variational Auto-encoder for Sentences

References
References

Outline

1 Language Modelling

2 Variational Auto-encoder for Sentences

Rios DGM4NLP 29 / 46



Language Modelling
Variational Auto-encoder for Sentences

References
References

Sen VAE

Model observations as draws from the marginal of a DGM.

An NN maps from a latent sentence embedding z ∈ Rdz to a
distribution p(x |z , θ) over sentences,

p(x |θ) =
∫
p(z)p(x |z , θ)dz

=
∫
N (z |0, I )

∏|x |
i=1 Cat (xi |f (z , x<i ; θ))dz

(9)

[Bowman et al., 2015]
Rios DGM4NLP 30 / 46



Language Modelling
Variational Auto-encoder for Sentences

References
References

Sen VAE

Model observations as draws from the marginal of a DGM.

An NN maps from a latent sentence embedding z ∈ Rdz to a
distribution p(x |z , θ) over sentences,

p(x |θ) =
∫
p(z)p(x |z , θ)dz

=
∫
N (z |0, I )

∏|x |
i=1 Cat (xi |f (z , x<i ; θ))dz

(9)

[Bowman et al., 2015]
Rios DGM4NLP 30 / 46



Language Modelling
Variational Auto-encoder for Sentences

References
References

Sen VAE

z xm1 θ

N

φ

Generative model

Z ∼ N (0, I )

Xi |z , x<i ∼ Cat(fθ(z , x<i ))

Inference model

Z ∼ N (µφ(xm1 ), σφ(xm1 )2)

Rios DGM4NLP 31 / 46



Language Modelling
Variational Auto-encoder for Sentences

References
References

Sen VAE

Generation is one word at a time without Markov
assumptions, but f ()conditions on z
in addition to the observed prefix.

The conditional p(x |z , θ) is the decoder.

p(x |θ) is the marginal likelihood.

We train the model to assign high (marginal) probability to
observations like a LMs.

However the model uses a latent space to exploit
neighbourhood and smoothness in latent space to capture
regularities in data space.
For example, it may group sentences according to certain e.g.
lexical choices, syntactic complexity, lexical semantics, etc...
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Approximate Inference

The model has a diagonal Gaussian distribution as variational
posterior:
qφ(z |x) = N (z |µφ(x), diag (σφ(x)))

With reparametrisation:
z = hφ(ε, x) = µφ(x) + σφ(x)� ε, where ε ∼ N (0, I) f

Analytical KL:
KL [qφ(z |x)‖pθ(z)] =
1
2

∑Dz
d=1

(
− log σ2φ(x)− 1 + σ2φ(x) + µ2φ(x)

)
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Approximate Inference

We jointly estimate the parameters of both generative and
inference by maximising a lowerbound on the log-likelihood
function (ELBO):

L(θ, φ|x) = Eq(z|x ,φ)[log p(x |z , θ)].
−KL(q(z |x , φ)|p(z))

(10)
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Architecture

Gaussian Sen VAE parametrises a categorical distribution over
the vocabulary for each given prefix, and, it conditions on a
latent embedding:
Z ∼ N (0, I ),
Xi |z , x<i ∼ Cat (f (z , x<i ; θ))

f (z , x<i ; θ) = softmax (si )

ei = emb (xi ; θemb)

h0 = tanh (affine (z ; θ init ))

hi = GRU (hi−1, ei−1; θgru)

si = affine (hi ; θout)

(11)
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The Strong Decoder Problem

The VAE may ignore the latent variable given the interaction
between the prior and posterior in the KL divergence.

This problem appears when we have strong decoders
conditional likelihoods p(x |z) parametrised by high capacity
models

The model might achieve a high ELBO without using
information from z

RNN LM is strong decoder because they condition on all
previous context when generating a word
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What to do?

Weakening the Decoder, the model relies on the latent
variables the reconstruction of the observed data.

KL Annealing, weigh the KL term in the ELBO with a factor
that is annealed from 0 to 1 over a fixed number of steps of
size γ ∈ (0, 1)

Word Dropout, by dropping a percentage of the input at
random, the decoder has to rely on the latent variable to fill in
the missing gaps.

Freebits because it allows encoding the first r nats of
information for free.
max(r ,KL(qφ(z |x)‖p(z)))
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Metrics

For VAE models, Negative log-likelihood NLL is estimated,
since we do not have access to the exact marginal likelihood.

We use an importance sampling (IS) estimate://

p(x |θ) =
∫
p(z , x |θ)dz

IS
=
∫
q(z |x)p(z,x |θ)q(z|x) dz

≈ 1
S

∑S
s=1

p(z(s),x |θ)
q(z(s)|x)

where z(s) ∼ q(z |x)
(12)

Perplexity PPL: the exponent of average per-word entropy,
given N i.i.d. sequences

PPL = exp

(∑N
i=1 log p (xi )∑N

i=1 |xi |

)
(13)

perplexity is based on the importance sampled NLL
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Baseline

RNNLM (Dyer et al., 2016)

At each step, an RNNLM parameterises a categorical
distribution over the vocabulary, i.e.
Xi |x<i ∼ Cat (f (x<i ; θ)) and

f (x<i ; θ) = softmax (si ) and

ei = emb (xi ; θemb)

hi = GRU (hi−1, ei−1; θgru)

si = affine (hi ; θout)

(14)

Embedding layer (emb), one (or more) GRU cell(s) (h0 ∈ θ is
a parameter of the model), and an affine layer to map from
the dimensionality of the GRU to the vocabulary size.
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Data

Wall Street Journal part of the Penn Treebank corpus

Preprocessing on train-validation-test split as [Dyer et al.,
2016]

WSJ section 1-21 training,

Section 23 as test corpus

Section 24 as validation
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Results

NLL↓ PPL↓
RNN-LM 118.7±0.12 107.1±0.46

VAE 118.4±0.09 105.7±0.36

Annealing 117.9±0.08 103.7±0.31

Free-bits 117.5±0.18 101.9±0.77
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Samples

decode greedily from a prior sampl and the variability is due to
the generator’s reliance on the latent sample.

The VAE ignores z and greedy generation from a prior sample
is essentially deterministic in that case
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Samples

Homotopy, decode greedily from points lying between a
posterior sample conditioned on the first sentence and a
posterior sample conditioned on the last sentence.

zα = α ∗ z1 + (1− α) ∗ z2
α ∈ [0, 1]
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