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Probabilistic Topic Models

Introduction

@ Topic modelling provides models for automatically organizing,
understanding, searching, and summarizing large corpus of
documents.

@ Discover the hidden domains in the corpus.
@ Annotate the documents according to those domains.

@ Use annotations to organise, summarise, search, and make
predictions over documents.
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Probabilistic Models
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Latent Dirichlet allocation (LDA)

@ Motivation is that documents show multiple topics.

e For example, in “Seeking Life's Bare (Genetic) Necessities,” is
about using data analysis to determine the number of genes
an organism needs to survive (in an evolutionary sense).

o Highlighted words related to data analysis: computer and
prediction, are highlighted in blue;
and evolutionary biology: life and organism, in pink;

o LDA is described by its generative process, the imaginary
random process by which the model assumes the documents
arose.

@ We denote a topic to be a distribution over a fixed vocabulary.

@ For example, the genetics topic contains words about genetics
with high probability.

@ We assume that these topics are specified before any data has
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LDA Objective
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@ We only observe the documents
@ The conditional distribution of the topic structure given the
observed documents
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Probabilistic Topic Models

For each document :
© Randomly choose a distribution over topics.
@ For each word in the document:
a Randomly choose a topic from the distribution over topics in
step 1.
b Randomly choose a word from the corresponding distribution
over the vocabulary
@ Each document exhibits the topics in different proportion
(stepl); each word in each document is drawn from one of the
topics (step 2b), where the selected topic is chosen from the
per-document distribution over topics (step 2a)
@ From the example article, the distribution over topics would
place probability on genetics, data analysis, and evolutionary
biology, and each word is drawn from one of those three
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LDA PGM

O—~O+0O—0 OO
a 04 Zan Wan N Ok n
D K

This joint defines a posterior, p(6, z, B|w).

From a collection of documents, infer

Per-word topic assignment z, ,

Per-document topic proportions 04

Per-corpus topic distributions S,

Then use posterior expectations to perform the task at hand:
information retrieval, document similarity, exploration, and
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Dirichlet distribution

The Dirichlet distribution is an exponential family distribution
over the simplex, i.e., positive vectors that sum to one

p(fla) = H r @) Hea'*l (1)

It is conjugate to the multinomial. Given a multinomial
observation, the posterior distribution of 6 is a Dirichlet.

The parameter a controls the mean shape and sparsity of 6 .

The topic proportions are a K dimensional Dirichlet. The
topics are a V dimensional Dirichlet.

The alpha controls the mixture of topics for any given
document.
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Dirichlet distribution

@ At low alpha values (less than one), most of the topic
distribution samples are in the corners (near the topics).

@ At alpha equal to one, any space on the surface of the triangle
(3-simplex) is fair game (uniformly distributed). You could
equally likely end up with a sample favoring only one topic, a
sample that gives an even mixture of all the topics, or
something in between.

@ For alpha values greater than one, the samples start to
congregate to the center. This means that as alpha gets
bigger, your samples will more likely be uniform or an even
mixture of all the topics.
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Working

LDA trades off two goals.
@ (1) For each document, allocate its words to as few topics as

possible.
(2) For each topic, assign high probability to as few terms as

possible.

@ Putting a document in a single topic makes 2 hard: All of its
words must have probability under that topic.

@ Putting very few words in each topic makes 1 hard: To cover
a document'’s words, it must assign many topics to it.

@ Trading off these goals finds groups of tightly co-occurring
words.
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Posterior Inference

Topics Documents Topica gg%tgg and
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@ Our goal is to compute the distribution of the hidden variables
conditioned on the documents
p(topics, proportions, assignments—documents)
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Posterior Inference

o 04 Zan Wan O n

@ The joint distribution of the latent variables and documents is
[0 P (Bi1m) T15- P (Bale) (TTN-1 P (26.0100) P (WarnBkzs,))

@ The posterior of the latent variables given the documents is
p(B,0,z|w)

Rios DGMA4NLP 19 /55



Probabilistic Topic Models

Posterior Inference

. (8,0,z,w)
° p(B.0,2lw) = AT

@ The denominator, the marginal p(w) is intractable
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Posterior Inference

Sample one document Analyze it Update the model

@ Condition on large data sets and approximate the posterior.

@ Variational inference, we optimize over a family of
distributions to find the member closest in KL divergence to
the posterior.
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Posterior Inference

Sample one document Analyze it Update the model

@ Sample a document wy from the collection

@ Infer how wy exhibits the current topics

© Create intermediate topics, formed as though the wy is the
only document.

@ Adjust the current topics according to the intermediate topics.

© Repeat.
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Mean-field variational inference for LDA

Yd ¢d,n by k
04 Zin Wan N Br
D K

© Document variables: Topic proportions 8 and topic
assignments zy.p .

@ Corpus variables: Topics (1.4

© The variational approximation is:
9(B,0,z) =
[Tiz1 @ (Bl TTgr 0 (Oalva) TTns 4 (za.0la.0)
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Mean-field variational inference for LDA

: Initialize topics randomly.
repeat
for each document do
repeat
Update the topic assignment variational parameters.
Update the topic proportions variational parameters.
until document objective converges
end for
Update the topics from aggregated per-document parameters.
. until corpus objective converges.

© @ NOO RN

o

Rios DGMA4NLP 24 /55



Probabilistic Topic Models

LDA Extensions
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Logistic normal prior
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Correlated topic models

Logistic normal prior

O-O1rO—-0 OO

wE ba | Zin Wan p B n

Draw topic proportions from a logistic normal
Allows topic occurrences to have correlation.
Gives a map of topics and how they are related

Better fit for observed data, but computation is more complex

Rios DGMA4NLP 26 /55
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Dynamic topic models

@ LDA assumes that the order of documents does not matter.
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Dynamic topic models

@ LDA assumes that the order of documents does not matter.
@ Corpora span hundreds of years

e e T
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Per-document influence Topic drift biased by influential articles
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@ Each document has an influence score Id.
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Dynamic topic models

@ Each document has an influence score Id.
@ Each topic is biased with the documents with high influence.

@ The posterior of the influence scores could find articles that
best explain the changes in language.
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Dynamic topic models
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Neural Variational Inference for Text Processing

@ Neural variational framework for generative models of
documents based on the variational auto-encoder.

[Miao et al., 2016]
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Neural Variational Inference for Text Processing

Neural variational framework for generative models of
documents based on the variational auto-encoder.

@ NVDM is a generative model of text which aims to extract a
continuous semantic latent variable for each document.

(]

Model is denoted by variational auto-encoder:

MLP encoder (inference) compresses the bag-of-words
document representation into a continuous latent distribution,
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Neural Variational Inference for Text Processing

@ Neural variational framework for generative models of
documents based on the variational auto-encoder.

@ NVDM is a generative model of text which aims to extract a
continuous semantic latent variable for each document.

@ Model is denoted by variational auto-encoder:

@ MLP encoder (inference) compresses the bag-of-words
document representation into a continuous latent distribution,

@ Softmax decoder (generative model) reconstructs the
document by generating the words independently.

[Miao et al., 2016]
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Neural Variational Inference for Text Processing

p(X|h) |
| OO0000 | X
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position i.
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o Let XinR!Y! be the bag-of-words representation of a document
and x;inR!V| be the one-hot representation of the word at
position i.

@ MLP encoder g(z|x) compresses document representations
into continuous hidden vectors

@ Softmax decoder p(x|z) = H,N:1 p (xi|z) reconstructs the
documents by independently generating the words.
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Neural Variational Inference for Text Processing

o Let XinR!Y! be the bag-of-words representation of a document
and x;inR!V| be the one-hot representation of the word at
position i.

@ MLP encoder g(z|x) compresses document representations
into continuous hidden vectors

@ Softmax decoder p(x|z) = H,N:1 p (xi|z) reconstructs the
documents by independently generating the words.

@ We derive the lower bound:

N
£ = Eq (e | 211 08 Py (xi12)] — Drce(a6(21%) (2))
where N is the number of words in the document
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Neural Variational Inference for Text Processing

@ Standard news corpora:

@ 20NewsGroups is a collection of newsgroup documents,
consisting of 11,314 training and 7,531 test articles.

@ Reuters RCV1-v2 is a large collection from Reuters newswire
stories with 794,414 training and 10,000 test cases.

@ The vocabulary size of these two datasets are set as 2,000 and
10,000
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Neural Variational Inference for Text Processing

Results

Model ‘ Dim | 20News | RCV1

LDA 50| 1091 1437
LDA 200‘ 1058} 1142
NVDM | 50| 836| 563
NVDM 200‘ 852’ 550

@ perplexity is computed pp/ = exp (—% y" N%, Iogp(xd)),

where D is the number of documents, Ny represents the
length of the dth document.
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Results

Model ‘ Dim | 20News | RCV1

LDA 50| 1091 1437
LDA 200 ‘ 1058 } 1142
NVDM | 50| 836| 563
NVDM | 200 ‘ 852 ’ 550

@ perplexity is computed pp/ = exp (—% y" N%, Iogp(xd)),

where D is the number of documents, Ny represents the
length of the dth document.

@ Since logp(x) in the NVDM is the variational lower bound
(which is an upper bound on perplexity).
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Neural Variational Inference for Text Processing

Results

The topics learned by NVDM on 20News

Space | Religion | Encryption | Sport | Policy
orbit muslims rsa goals bush
lunar worship | cryptography | pts | resources
solar belief crypto teams | charles
shuttle | genocide keys league | austin
moon jews pep team bill
launch islam license players | resolution
fuel |christianity secure nhl mr
nasa atheists key stats misc
satellite | muslim eSCrow min piece
japanese | religious trust buf marc
Rios DGMA4NLP
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@ Introduce a neural network to parameterise the multinomial topic

distribution
Og ~ G(,uo,crg) ,forde D

zp, ~ Multi (64), for n € [1, Ny] (2)
w, ~ Multi (3,,), for n € [1, Ng]
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Discovering Discrete Latent Topics

@ Introduce a neural network to parameterise the multinomial topic

distribution
Og ~ G(,uo,crg) ,forde D

zp, ~ Multi (64), for n € [1, Ny] (2)
w, ~ Multi (3,,), for n € [1, Ng]
@ G(po,0?) is composed of a NN 6 = g(x) conditioned on a isotropic
Gaussian x ~ N (pg,030)

@ Gaussian Softmax Construction pass a Gaussian random vector
through a softmax function to parameterise the multinomial
document topic distributions.

X~ N(ﬂOaUg) (3)
6 = softmax (W, x)
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Discovering Discrete Latent Topics

— logo -
O P~ N(.Uo.gé) O
o 8 ‘ O @
O’ MLP O X=p+e-a g(x) O log (6-p) O Wn
© Ol eentor O —@
O e~N(0,I%) O
O O
O X O
o O b
(] b 9
< S
q(6]d) pld|o)

[Miao et al., 2017]
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@ Neural Topic Models with a finite number of topics K.
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@ The topic distribution over words given a topic assignment z,
is

p(wnlB. 20) = Multi(3;,).
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@ Neural Topic Models with a finite number of topics K.

@ The topic distribution over words given a topic assignment z,
is
p(wn|B, zn) = Multi(B,,).

o Introduce topic vectors t € RK*H
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Discovering Discrete Latent Topics

Discovering Discrete Latent Topics

@ Neural Topic Models with a finite number of topics K.

@ The topic distribution over words given a topic assignment z,
is
P(Wn|B, ) = Multi(B,).

o Introduce topic vectors t € RK*H

e word vectors v € RV*H

@ and generate the topic distributions over words by:
B = softmax (v . tkT)
B € RK*V is the semantic similarity between topics and
words.
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@ With lower bound: A
La =304 [logp (wal5.8) ] = Drela(x|d)|p(x)]
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@ With lower bound: A
La =304 [logp (wal5.8) ] = Drela(x|d)|p(x)]
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Discovering Discrete Latent Topics

Discovering Discrete Latent Topics

@ With lower bound: A
La =304 [logp (wal5.8) ] = Drela(x|d)|p(x)]

Iogp(Wn\Bvé) '°€Z[ (wn|Bz,) P (Z"WA)}

= log(f - B)

CON addition of topic diversity regularisation to the objective

(4)
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@ Unbounded neural topic models the topics t € R®*H are
dynamically generated by RNNtpic The generation of 3 is as

follows:
by = RNN Topic (tk—l)

Bk = softmax <v . tkT>

(5)
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Discovering Discrete Latent Topics

@ Unbounded neural topic models the topics t € R®*H are
dynamically generated by RNNtpic The generation of 3 is as
follows:

tx = RNN 1opic (tk—1)

Bk = softmax <v . tkT>

(5)

@ where v represents the word vectors, ti is the kth topic
generated by RNN
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Discovering Discrete Latent Topics

@ Unbounded neural topic models the topics t € R®*H are
dynamically generated by RNNtpic The generation of 3 is as

follows:
by = RNN Topic (tk—l)

5
Bk = softmax <v . tkT> ®)
@ where v represents the word vectors, ti is the kth topic
generated by RNN
e If | > ~, we increase the active number of topics i/ by 1,
Dl A . Drai
T=32|cy -] /28 [£])
Rios DGM4NLP
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Discovering Discrete Latent Topics

tk = RNN Topic (tk—l)

Bk = softmax (v : t,z—)

(6)
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Discovering Discrete Latent Topics

Results

MXM 20News RCV1

Finite Topic Model

50 200 50 200 S50 200
GSM 306 272 822 830 717 602
GSB 309 296 838 826 788 634
RSB 311297 835 822 750 628
OnlineLDA 312 342 893 1015 1062 1058
(Hoffman et al., 2010)
NVLDA 330 357 1073 993 791 797

(Srivastava & Sutton, 2016)

Unbounded Topic Model MXM 20News RCVI1

RSB-TF 303 825 622
HDP (Wang et al., 2011) 370 937 918

e *MXM the Million Song Dataset with 210,519 training and

Rios DGMA4NLP 44 /55



Discovering Discrete Latent Topics

Results

Space | Religion | Encryption | Sport Science
space god encryption | player science
satellite | atheism device hall theory
april exist | technology |defensive| scientific
sequence | atheist protect team universe
launch moral | americans | average |experiment
president |existence chip career |observation
station | marriage use league | evidence
radar system privacy play exist
training | parent industry bob god
committee | murder |enforcement| year mistake
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@ LDA VAE
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o Effective VAE based model for LDA

[Srivastava and Sutton, 2017]
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LDA VAE

LDA VAE

o Effective VAE based model for LDA

@ Dirichlet within VAE is difficult to develop an effective
reparameterisation function
Solve by constructing a Laplace approximation to the Dirichlet
prior.

@ This approximation to the Dirichlet results in the distribution
over the softmax variables

[Srivastava and Sutton, 2017]
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LDA VAE

Laplace approximation

@ Approximation in the softmax basis instead of the simplex.
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LDA VAE

Laplace approximation

@ Approximation in the softmax basis instead of the simplex.

@ Dirichlet probability density function over the softmax variable

h is:
P(o(Ie) = T Mue(rm) @

@ Here 0 = o(h), where o(-) represents the softmax function
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LDA VAE

LDA VAE

@ Approximation to the Dirichlet results in the distribution over
the softmax variables h as a multivariate normal with mean pu;
and covariance matrix X1 where:

1
pik = logay — X Z log
1

1 2 1 1
Yk =—(1—— — —
1kk ak< K>+K22i:ak
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@ Approximate of p(6|«) with p (0|1, X1) = LN (0]u1, X1)
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@ where LN is a logistic normal distribution with parameters p1, X1 for k
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LDA VAE

@ Approximate of p(6|«) with p (0|1, X1) = LN (0]u1, X1)

@ where LN is a logistic normal distribution with parameters p1, X1 for k
(number of topics).

@ and ELBO:

L) = 25:1 [_ ( {tr 120 + (pq No)T s (g — 110) — K + log %1
F+Ecnro,1 [Wd log (g(ﬂ)g (No + Zl/z
(9)
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LDA VAE

LDA VAE

@ Approximate of p(6|«) with p (0|1, X1) = LN (0]u1, X1)

@ where LN is a logistic normal distribution with parameters p1, X1 for k
(number of topics).

@ and ELBO:

L(©) =3P, [— ( {tr EV%0) + (i — o) Ext (g — pro) — K + log 1221
F+Ecnro,1 [Wd log (U(ﬁ)a (No + 21/2
9)
@ with o = fu(w, d) and X, = diag (fz(w, 9))
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Architecture

LDA VAE

T fZ
L
L BN Layer } 100 x

k
Mean Sigma
§ 4
Softplus
100 x 100
‘ FC Layer
A
|
Softplus Input x 100
FC Layer
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LDA VAE

Results

[ ProdLDA | LDA | LDA LDA

#topics | “ VAR | VAE | DMFVI | Collapsed Gibbs | VYPM
50 1172 11059 | 1046 728 837
200 1168 | 1128 | 1195 688 884

pp! 20 Newsgroups
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LDA VAE

Results

Model Topics

motherboard meg printer quadra hd windows processor vga mhz connector
armenian genocide turks turkish muslim massacre turkey armenians armenia greek
ProdLDA voltage nec outlet circuit cable wiring wire panel motor install

season nhl team hockey playoff puck league flyers defensive player

israel israeli lebanese arab lebanon arabs civilian territory palestinian militia

db file output program line entry write bit int return

drive disk get card scsi use hard ide controller one

LDA game team play win year player get think good make
NVLDA use law state health file gun public issue control firearm
people say one think life make know god man see
write article dod ride right go get night dealer like
gun law use drug crime government court criminal firearm control
LDA lunar flyers hitter spacecraft power us existence god go mean
DMFVI stephanopoulos encrypt spacecraft ripem rsa cipher saturn violate lunar crypto
file program available server version include software entry ftp use
get right back light side like see take time one
LDA list mail send post anonymous internet file information user message
Collapsed Gibbs thanks please know anyone help look appreciate get need email

jesus church god law say christian one christ day come

bike dod ride dog motorcycle write article bmw helmet get

light die burn body life inside mother tear kill christian

insurance drug different sport friend bank owner vancouver buy prayer

NVDM input package interface output tape offer component channel level model

price quadra hockey slot san playoff jose deal market dealer

christian church gateway catholic christianity homosexual resurrection modem mouse sunday
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