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Recap
• Noisy Channel
P (E|F ) = P (E)P (F |E)

P (F )

• Most likely translation
argmax

e
P (E|F ) = argmax

e
P (E)P (F |E)

(1) the chance that someone would say E first place
(2) if say E, the chance that someone else would translate it
into F.
(3) P (F |E) will ensure that a good E will have words that
generally translate to words in F.
(4) P (E) language model.

• Linear Model

Sθ(e, d, f) = θT
n∑
i

hi(di|e, f)
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Figure: Koehn [2010]

werde X aushändigen | shall be passing on X
2 / 25
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Why hierarchical structure?

Better generalisation
• compositionality
• reordering
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Why is reordering important?

Monotone translation is unrealistic
• languages differ wrt word-order

e.g. different syntactic structure
e.g. rich morphology

Reordering is arguably one of the hardest problems in MT
• part of the model of translational equivalences

the part that determines the space of translations
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Key aspects

Expressiveness
• how much can two languages differ wrt word order?

Modelling
• how many parameters do we have to estimate?
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Hiero

Hierarchical phrase-based - Motivation

Local Reordering

J’ ai les ye
ux

no
irs

I
have
black
eyes

• Monotone
J’1 ai2 → I1 have2

• Swap
les yeux4 noirs5 → black3 eyes4

• Discontinuous
ai2 X3−4 noirs5 → have2 black3
X4
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Hiero

Hierarchical phrase-based - Motivation

Discontiguous Phrases

Je ne va
is

pa
s

I
do
not
go

• Gappy phrase
ne vais pas → do not go
ne Xvais pas → do not Xgo
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Hiero

Hierarchical phrase-based - Motivation

Long Distance Reordering

Ic
h

w
er

de

Ih
ne

n

di
e

en
ts

pr
ec

he
nd

en

A
nm

er
ku

ng
en

au
sh
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di

ge
n

I
shall
be
passing
on
to
you
some
comments
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• How can we extract a biphrase for
shall be passing on?

• We cannot, we need to extract to
you some comments along

• Unless we replace all those words
by a variable
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Hiero

Hierarchical phrase-based - Motivation

Long Distance Reordering

shall be passing on to you some comments
l

werde Ihnen die entsprechenden Anmerkungen aushändigen
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Hiero

Hierarchical phrase-based - Motivation

Long Distance Reordering

shall be passing on ////////////////////////////to you some comments
l

werde ///////////////////////////////////////////////Ihnen die entsprechenden Anmerkungen aushändigen
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Hiero

Hiero

Extends phrase-based MT with hierarchical rules [Chiang, 2005]

• conditions on word alignment
• heuristic rule extraction
• heuristic scoring by relative frequency counting
• log-linear model
• SCFG decoding

Motivation
• long-distance reordering
• lexicalised reordering
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Hiero

Hiero

PBSMT, one level of hierarchy.
HPBSMT, any kind of tree depth.
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Hiero

Hiero
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Hiero

Heuristic rule extraction

Initial phrase pairs created with same heuristic as PBSMT.

shall be passing on to you some comments
l

werde Ihnen die entsprechenden Anmerkungen aushändigen

14 / 25



Introduction Motivation Hierarchical models of translation Decoding Tuning References

Hiero

Heuristic rule extraction

Initial phrase pairs created with same heuristic as PBSMT.

shall be passing on ////////to you some comments
l

werde ///////Ihnen die entsprechenden Anmerkungen aushändigen
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14 / 25



Introduction Motivation Hierarchical models of translation Decoding Tuning References

Hiero

Heuristic rule extraction

Initial phrase pairs created with same heuristic as PBSMT.

shall be passing on X1 ///////////////////some comments
l

werde X1 ////////////////////////////////////////die entsprechenden Anmerkungen aushändigen
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Hiero

Heuristic rule extraction

Initial phrase pairs created with same heuristic as PBSMT.

shall be passing on X1 X2
l

werde X1 X2 aushändigen
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Hiero

Heuristic rule extraction

Initial phrase pairs created with same heuristic as PBSMT.

[X]→ shall be passing on X1 X2 | werde X1 X2 aushändigen
[X]→ shall be passing on X3 | werde X3 aushändigen
[X]→ to you | Ihnen
[X]→ some comments | die entsprechenden Anmerkungen
[X]→ to you some comments | Ihnen die entsprechenden Anmerkungen
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Hiero

Hiero - Scoring
Relative frequency: assume all fragments have been “observed”
Give a count of one to phrase pair occurrence, then distribute its weight equally
among the obtained rules.

• Joint rule probatility: p(LHS, RHSsource, RHStarget)

p(X, la maison X1, the X1 house)

• Rule application probability: p(RHSsource, RHStarget|LHS)

p(la maison X1, the X1 house|X)

• Direct translation probability: p(RHStarget|RHSsource, LHS)

p(the X1 house|la maison X1, X)

• Noisy-channel translation probability: p(RHSsource|RHStarget, LHS)

p(la maison X1|the X1 house, X)

• Lexical translation probability∏
ti∈RHStarget

p(ti|RHSsource, a)
∏

si∈RHSsource
p(si|RHStarget, a)
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Hiero

Hiero - Model

Log-linear combination of features

Linear model

Sθ(e, d, f) = θT
∑
rs,tεd

hi(rs,t|e, f)

where s is a span over F,
t is a span over E
and r is a rule.
Weighted synchronous CFG.
LM.
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Decoding

Phrase-based

• Left-to-Right
• Beam Search
• Formally intersection:
• FST (TM) × FSA (LM)

Tree-based

• Bottom-Up
• Chart Parsing
• Formally intersection:
• SCFG (TM) × FSA (LM)
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Discriminative Model

• model consists of features.

• each feature has a weight.
• supervised learning: tune feature weights wrt. an evaluation

metric on development data
• Which objective?

Bilingual Evaluation Understudy metric BLEU
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Tuning

Task: find weights so that the model ranks best translations first.
• Translate development corpus using model with current

feature weights,
N -best list of translations (N = 100, 1000, . . .)

• Evaluate translations with the objective
• Adjust feature weights to increase the gain
• Iterate translation, evaluation, and adjustment of feature

weights
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MERT

Minimum error rate training (MERT)
• coordinate ascent, where the search updates a feature weight

which appears most likely to offer improvements.

• Highest point in a hilly city with a grid of streets, like San
Francisco. [Koehn, 2008]
We start along a certain street.
Find its highest point and continue along the cross-street.
Also in this cross-street we find the highest point.
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MERT

• Line search for best feature weights
given: sentences with n-best lists of translations

• iterate n times
randomize starting feature weights
for each feature

• find best feature weight
• update if different from current

• return best feature weights found in any iteration
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MERT
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Homework

• Neural Machine Translation and Sequence-to-sequence
Models: A Tutorial

• Section 5.1 - 5.3 Neural Networks and Feed-forward
Language Models

• Section 6.1-6.4, 6.5 Recurrent Neural Network Language
Models

• Familiarise with preprocessing (Tokenizer, Lowercase, BPE)

25 / 25
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Homework

• Deep Learning, NLP, and Representations
http://colah.github.io/posts/
2014-07-NLP-RNNs-Representations/

• Understanding LSTM Networks
http://colah.github.io/posts/
2015-08-Understanding-LSTMs/

26 / 25

http://colah.github.io/posts/2014-07-NLP-RNNs-Representations
http://colah.github.io/posts/2014-07-NLP-RNNs-Representations
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