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MLE IBM 1

Global variables

» For each English type e,
we have a vector . of categorical
parameters
m— > 0<b. <1
> Zfe]-‘ Oc,p =1
and Ppp(fle) = Cat(f|0) = be s

eyt — 0
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Local assignments

eyt — 0

» For each French word position j,
14j AJZJ(O. ..Tn)

Fjleq; ~ Cat(@eaj)
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Bayesian IBM 1

ey —

Global assignments

» For each English type e,
sample categorical parameters

@ fe ~ Dir(«)

&

2/20



Bayesian IBM 1
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MLE vs Bayesian IBM1
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MLE vs Bayesian IBM1

Incomplete data likelihood

P(fj.a;le™ ’OUE)

P(fler,077) = [T > Plaglm)P(fjlea,. 077) (1)

jil aJ'ZO

P(fjler.0,")
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MLE vs Bayesian IBM1

Incomplete data likelihood

P(fj.a;le™ ’OUE)

n m
P(fel, 077) H Z P(ajlm)P(f;leq,;, 01" )

jil aJ'ZO

P(fjler,6,7)
Marginal likelihood (evidence)

P(ft'ler*,a) = [ p(67%|a) P(f1']er", 677 )d0y”
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MLE vs Bayesian IBM1

Incomplete data likelihood

P(fj.a;le™ ’OUE)

n m
P(fel, 077) H Z P(ajlm)P(f;leq,;, 01" )

jil aJ'ZO

P(fjler.0,")

Marginal likelihood (evidence)

P(fler, a / p(07F |0) P(f7[el, 077 )0

p(677 ) H Z P(a;lm)P(fjlea;,0 €a; )doy”

j=1la;=0

(1)

(2)

3/20



What is a Dirichlet distribution?
Dirichlet: 6. ~ Dir(a) with o € R%

(0. la) — (X peray) ap—1
Dir(fe|a) = er]_-F(Ozf) Jg:ee,f (3)

» an exponential family distribution over probability vectors

» each outcome is a vp-dimensional vector of probability values
that sum to 1

» can be used as a prior over the parameters of a Categorical
distribution

» that is, a Dirichlet sample can be used to specify a
Categorical distribution
e.g. F|E =e~ Cat(f.)

Use this and this to learn more
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https://github.com/uva-slpl/nlp2/blob/gh-pages/resources/notebooks/Dirichlet.ipynb
https://en.wikipedia.org/wiki/Dirichlet_distribution

Why a Dirichlet prior on parameters?

If we set the components of « to the same value, we get a
symmetric Dirichlet, if that value is small the Dirichlet will prefer

» samples that are very peaked

» in other words, categorical distributions that concentrate on
few outcomes
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Why a Dirichlet prior on parameters?

If we set the components of « to the same value, we get a
symmetric Dirichlet, if that value is small the Dirichlet will prefer

» samples that are very peaked

» in other words, categorical distributions that concentrate on
few outcomes

In MLE we choose one fixed set of parameters (via EM)

In Bayesian modelling we average over all possible parameters
» where each parameter set is weighted by a prior belief

» we can use this as an opportunity to, for example, express our
preferences towards “peaked models”
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Contrast the Dirichlet samples
Top: sparse Dirichlet prior (small alpha)

» configurations that are this sparse will
be roughly as likely

plot_dirichlet samples(alpha=0.1, nb_samples=1)

o > less sparse configurations will be less
o likely

0

- » “the prior doesn’t care where the tall
; : | bars are, as long as they are few”

1 3 3 4 5 & 7 8 9§ 1
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Contrast the Dirichlet samples

plot_dirichlet samples(alpha=0.1, nb_samples=1)

s

1

Top: sparse Dirichlet prior (small alpha)

» configurations that are this sparse will
be roughly as likely

> less sparse configurations will be less
likely

» ‘“the prior doesn’t care where the tall
bars are, as long as they are few”

Take samples from the top Dirichlet to
parameterise a Categorical distribution
conditioning on English word “dog”

» locations of the bars correspond to
French words in the vocabulary

» the prior basically expresses the belief
that whatever “dog” translates to,
there shouldn't be many likely options
available in French
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An alternative way to write the likelihood

We can write a likelihood based on Categorical events as follows

P(ff,ailer",677) = [T Plajlm) P(filea, . 6077)
—_—

j=1

m:—l afj\Eaj (4)

1 n
= ——1[ 0.
(m+1) e J1Ta;

| use Oc ¢, Oc— ¢, and ()H( interchangeably
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An alternative way to write the likelihood

We can write a likelihood based on Categorical events as follows

P(f?’aﬁegn’gil)};) = HP(aJ|m) P(fjleajae;}E)
—_———— —

j=1

m:—l afj\Eaj (4)

1 n
= ——1[ 0.
(m+1) e J1Ta;

an alternative way iterates over the vocabulary of pairs, rather than
over the sentence

n n m v # ffn7an)em
P(fl’a1|el aelE)OCHHGer(e_)‘ fetel (5)
ecEfeF

where #(e — f|f{, a}, e]") counts how many times e and f are
aligned in the sentence pair f{*, e]" given the alignments a’

| use Oc ¢, Oc— ¢, and ()H< interchangeably
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An alternative way to write the likelihood (cont)
The new form reveals similarities to the Dirichlet

Dirichlet prior

independent priors

—_——~
QUE D 9 Zfe]‘— af 9&(71
@) = [ Dir(6elo) = ] .~ D(ar) fle
ecE ece Lifer feF

Multinomial (or Categorical likelihood)

P(f7 ailep’,0) o [T [T o0t

eecEfeF
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An alternative way to write the likelihood (cont)
The new form reveals similarities to the Dirichlet

Dirichlet prior

independent priors

evE Di 9 Zfe}' Oéf 904*1 (6)
la) = Ii[ ir(ela) = Ii[ T T(ar) fle
ecE ecg tifer feF

Multinomial (or Categorical likelihood)

n n|.m # flf7,al,e™
P(ffagler,0) o T T o7t @)

eecEfeF

Thus
p(01%, fi'sal'lel", o) = p(67%|)p(fi'; allel", 677)

as—1 #(e—f|f",alel")
SR
ecEfeF
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An alternative way to write the likelihood (cont)
The new form reveals similarities to the Dirichlet

Dirichlet prior

independent priors

evE Di 9 Zfe}' Oéf 904*1 (6)
la) = H ir(ela) = H T T(ar) fle
ecE ecg tifer feF

Multinomial (or Categorical likelihood)

n n|.m # flf7,al,e™
P(ffagler,0) o T T o7t @)

eecEfeF

Thus
p(01%, fi'sal'lel", o) = p(67%|)p(fi'; allel", 677)

as—1 #(e—f|f1",a7el")
o [T T 66" > of e )
ecE feF

(eI Fal o) bag—1
fle
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Bayesian IBM 1: Joint Distribution

Sentence pair: (e]", 1)

constant Dir prior likelihood
—— —N— non _m
n o n guvp|.m _ n #(e—f[f{" a7 ,e]
pUT af 0% [€5' @) = P(a} |m) pele) [T TT 6%
ec& ecé& feFr
~~ ~~
English types French types
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Bayesian IBM 1: Joint Distribution

Sentence pair: (e]", 1)

constant Dir prior likelihood

n n v m n e—f ,att el
p(fi 0t 077 | a) = P(atlm) [ p@le) ] T efet

ec& ecé& feFr
~~ ~~
English types French types

f 9 1 #(e—f| f1",al e”
P TT 55220 TTap T

Dirichlet Categorical
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Bayesian IBM 1: Joint Distribution

Sentence pair: (e]", 1)

constant Dir prior likelihood

n n v m n e—f ,att el
p(fi 0t 077 | a) = P(atlm) [ p@le) ] T efet

ec& ecé& feFr
~~ ~~
English types French types

f 9 1 #(e—f| f1",al e”
P TT 55220 TTap T

Dirichlet Categorical

Plaipm) TTTT 00
e
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Bayesian IBM 1: Joint Distribution (Il)

Sentence pair: (ef", 1)

p(fI, a, 0% el ) o P(a}|m) H H G#e(e%flf{b,a},e}t)+af—1 (9)
f

Corpus: (e,f)

p(f.a,007lem,a) o [ Platm) [T [ o7l Mol et
f

(eg", f1'a1) e
= P(a|m) H H g]jt(e—’f\f,a,e)+af—1
e f

(10)
where | use boldface to indicate the collection
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Bayesian IBM 1: Inference

In Bayesian modelling there is no optimisation
> we do not pick one model

> instead, we infer a posterior distribution over unknowns
and reason using all models (or a representative sample)
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Bayesian IBM 1: Posterior

Intractable marginalisation

U p(f7 a79’e7 m7 a)
p(aa 61E|ea m, fa Oé) = fz /p(f a’ 0/’8 m Oé)del (11)
a y Ay ) )

» 0% are global variables: posterior depends on the entire
corpus

» the summation goes over every possible alignment
configuration for every possible parameter setting
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Bayesian IBM 1: Approximate inference

Traditionally, we would approach posterior inference with an
approximate algorithm such as Markov chain Monte Carlo

» based on sampling from the posterior by sampling one variable

at a time and forming a chain whose stationary distribution is
the true posterior

Mermer and Saraclar [2011] introduce Bayesian IBM1 and derive a Gibbs

sampler
13/20



Bayesian IBM 1: Approximate inference

Traditionally, we would approach posterior inference with an
approximate algorithm such as Markov chain Monte Carlo

» based on sampling from the posterior by sampling one variable

at a time and forming a chain whose stationary distribution is
the true posterior

MCMC is fully general, but can be hard to derive, and can be slow
in practice

Mermer and Saraclar [2011] introduce Bayesian IBM1 and derive a Gibbs
sampler
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Variational inference

Optimise an auxiliary model to perform inference
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https://en.wikipedia.org/wiki/Kullback\OT1\textendash Leibler_divergence

Variational inference

Optimise an auxiliary model to perform inference

» postulate a family Q of tractable approximations ¢(z) to true
posterior p(z|x)
where z are latent variables and x are observations
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Variational inference

Optimise an auxiliary model to perform inference

» postulate a family Q of tractable approximations ¢(z) to true
posterior p(z|x)
where z are latent variables and x are observations

» pick the member ¢* of Q that is closest to p(z|x)
measure closeness with KL divergence

P use tractable ¢* instead of p for inference and predictions

Objective
qx = argmin KL(q(2)][p(z[z))
qeQ
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Variational inference

Optimise an auxiliary model to perform inference

» postulate a family Q of tractable approximations ¢(z) to true
posterior p(z|x)
where z are latent variables and x are observations

» pick the member ¢* of Q that is closest to p(z|x)
measure closeness with KL divergence

P use tractable ¢* instead of p for inference and predictions

Objective
qx = argmin KL(q(2)][p(z[z))
qeQ

q(2) } (12)

=argmin E, ) {log
qeQ
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https://en.wikipedia.org/wiki/Kullback\OT1\textendash Leibler_divergence

Variational Inference - Objective
The original objective is intractable due to posterior

: q(z)
gx = argmin E_, [log ]
e [0 p(el)
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Variational Inference - Objective
The original objective is intractable due to posterior

: q(z) ]
x = argmin E, ., |log
TN [ p(:l2)
=argmin E,) |log q(gzx))
7€Q pp(.;:)
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Variational Inference - Objective
The original objective is intractable due to posterior

q(2) ]

p(z|z)

qx = argmin E ) [log
qeQ

= arqgengnn Eyz) [log o)

(
=argmin E) [log a(z)

] + log p(x)
qeQ N——

constant
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Variational Inference - Objective
The original objective is intractable due to posterior

qx = argmin E ) [log a(2) ]

g€Q p(z|)
=argmin E,) |log ,?(sz))

q€eQ p(;)
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=argmin E) [log
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qeQ N——

constant
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=argmin —E,, [log ]
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q(z) }

= argmax E, ) [log
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Variational Inference - Objective
The original objective is intractable due to posterior

qx = argmin E ) [log a(2) ]
p

g€Q (z]z)
=argmin E,) |log ,?(sz))

q€eQ p(;)
q(z)

=argmin E) [log

] + log p(x)
qeQ N——

constant

5

= argmax E, ) [

qeQ
= argmax ) [logp( ) Eq(2) [log q(2)]
qeQ N—
H(q(=))
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Evidence lowerbound (ELBO)

We've shown that minimising KL(q(2)||p(z|z)) is equivalent to
maximising a simpler objective

g* = arg néax Eqe2) log p(z, )] + H(q(z))
q€

known as the evidence lowerbound

The name ELBO has to do with the fact that log p(z) > ELBO
16/20


https://uva-slpl.github.io/nlp2/resources/papers/Schulz-BayesIBM1-tutorial.pdf

Evidence lowerbound (ELBO)

We've shown that minimising KL(q(2)||p(z|z)) is equivalent to
maximising a simpler objective

g* = arg HQLaX Eqe2) log p(z, )] + H(q(z))
q€

known as the evidence lowerbound

For certain pairs of distributions in the exponential family, the
quantities involved are both tractable

P> e.g. the entropy of a Dirichlet variable is an analytical
function of the parameter «

> e.g. check for analytical results for the first term

The name ELBO has to do with the fact that log p(z) > ELBO
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https://uva-slpl.github.io/nlp2/resources/papers/Schulz-BayesIBM1-tutorial.pdf

How do we design ¢ for Bayesian IBM17?

Mean field assumption: make latent variables independent in ¢
qlaf, 07%) = q(67*) x Q(af)

= Lot = J] @(a) (1)
e j=1
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How do we design ¢ for Bayesian IBM17?

Mean field assumption: make latent variables independent in ¢
qlaf, 07%) = q(67*) x Q(af)

= Lot = J] @(a) (1)
e j=1

Pick convenient parametric families

n

q(ay,07%|p,\) = Hq(@e\)\ H (aj]8;)
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j=1
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How do we design ¢ for Bayesian IBM17?

Mean field assumption: make latent variables independent in ¢
qlaf, 07%) = q(67*) x Q(af)

- 13
~ [La0) x ] Q(a)) (3)
e j=1
Pick convenient parametric families
q(ay,07%|p,\) = Hq(@e\)\ H (aj]8;)
! (14)

_ HDH (0e|Ae) X HCat aj|d;)

j=1

Find optimum parameters under the ELBO
» one Dirichlet parameter vector A¢ per English type
Ae consists of vp strictly positive numbers
» one Categorical parameter vector ¢; per alignment link
¢; consists of a probability vector over m + 1 positions
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ELBO for Bayesian IBM1

Objective

A A

(A, ¢) = arg max E,[log p(f1', at, 07" |el", a)] + H(q)
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ELBO for Bayesian IBM1

Objective

A A

(A, 0) = arg}\rgax Eqlogp(f1', at, 077 |el", )] + H(q)
= arg I(IblaXZEq[log P(aj|m)P(filea,,07%) — log Q(aj|¢;)]
) J:]-

+ Z E,[log p(Oe|ar) — log q(0e|Ae)]

e — KL(g(0e o) [p(0c )

(15)
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VB for IBM1

Optimal Q(a;|¢;)

e (¥ (M) = ¥ (S M)
Djk =

Z?;O eXp <\Il <)‘fj|ei) -V (Ef )‘f|ei))
where ¥(-) is the

For derivations check CGLEENEES

(16)
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https://en.wikipedia.org/wiki/Digamma_function
https://github.com/philschulz/Reports/blob/master/VI/IBMVI/IBMVI.pdf

VB for IBM1

Optimal Q(a;|¢;)
exp (‘I’ (Mm) - (X Aflek))
Z?lo exp (qj </\fj|€i> -V (Zf )‘f|6i))

where U(-) is the

ik =

Optimal g(fe|Xe)

)\f|e—04f+ Z ZEQ(LUW e_>f|fj7aj7671n)]
mfn J 1

For derivations check

(16)

(17)
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https://en.wikipedia.org/wiki/Digamma_function
https://github.com/philschulz/Reports/blob/master/VI/IBMVI/IBMVI.pdf

Algorithmically

E-step as in MLE IBM1,
however, using Q(a;|¢;) instead of P(ajlef’, f;,077)
» maintain a table of parameters A

> where in Frequentist EM you would use 6, use instead 6

> lge = exp (¥ (Ae) = ¥ (Ep Are))
(note these are not normalised probability vectors)
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Algorithmically

E-step as in MLE IBM1,
however, using Q(a;|¢;) instead of P(ajlef’, f;,077)
» maintain a table of parameters A
> where in Frequentist EM you would use 6, use instead 6

> lge = exp (¥ (Ae) = ¥ (Ep Are))
(note these are not normalised probability vectors)

M-step

> Afle = af + E[#(e — f)]
where expected counts come from E-step
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