Dirichlet priors for IBM model 1

Wilker Aziz

April 11, 2019

MLE IBM 1

Global variables

- For each English type e, we have a vector θ_{e} of categorical parameters
- $0<\theta_{e}<1$
- $\sum_{f \in \mathcal{F}} \theta_{e, f}=1$
and $P_{F \mid E}(f \mid e)=\operatorname{Cat}\left(f \mid \theta_{e}\right)=\theta_{e, f}$

MLE IBM 1

Global variables

- For each English type e, we have a vector θ_{e} of categorical parameters
- $0<\theta_{e}<1$
- $\sum_{f \in \mathcal{F}} \theta_{e, f}=1$
and $P_{F \mid E}(f \mid e)=\operatorname{Cat}\left(f \mid \theta_{e}\right)=\theta_{e, f}$
Local assignments
- For each French word position j,

$$
\begin{gathered}
A_{j} \sim \mathcal{U}(0 \ldots m) \\
F_{j} \mid e_{a_{j}} \sim \operatorname{Cat}\left(\theta_{e_{a_{j}}}\right)
\end{gathered}
$$

Bayesian IBM 1

Global assignments

- For each English type e, sample categorical parameters

$$
\theta_{\mathrm{e}} \sim \operatorname{Dir}(\alpha)
$$

Bayesian IBM 1

Global assignments

- For each English type e, sample categorical parameters

$$
\theta_{\mathrm{e}} \sim \operatorname{Dir}(\alpha)
$$

Local assignments

- For each French word position j,

$$
\begin{gathered}
A_{j} \sim \mathcal{U}(0 \ldots m) \\
F_{j} \mid e_{a_{j}} \sim \operatorname{Cat}\left(\theta_{e_{a_{j}}}\right)
\end{gathered}
$$

MLE vs Bayesian IBM1

MLE vs Bayesian IBM1

Incomplete data likelihood

$$
\begin{equation*}
P\left(f_{1}^{n} \mid e_{1}^{m}, \theta_{1}^{v_{E}}\right)=\prod_{j=1}^{n} \underbrace{\sum_{a_{j=0}}^{m} \overbrace{P\left(a_{j} \mid m\right) P\left(f_{j} \mid e_{a_{j}}, \theta_{1}^{v_{E}}\right)}^{P\left(f_{j}, a_{j} \mid e_{1}^{m}, \theta_{1}^{v_{E}}\right)}}_{P\left(f_{j} \mid e_{1}^{m}, \theta_{1}^{v_{E}}\right)} \tag{1}
\end{equation*}
$$

MLE vs Bayesian IBM1

Incomplete data likelihood

$$
\begin{equation*}
P\left(f_{1}^{n} \mid e_{1}^{m}, \theta_{1}^{v_{E}}\right)=\prod_{j=1}^{n} \underbrace{\sum_{a_{j}=0}^{m} \overbrace{P\left(a_{j} \mid m\right) P\left(f_{j} \mid e_{a_{j}}, \theta_{1}^{v_{E}}\right)}^{P\left(f_{j}, a_{j} \mid e_{1}^{m}, \theta_{1}^{v_{E}}\right)}}_{P\left(f_{j} \mid e_{1}^{m}, \theta_{1}^{v_{E}}\right)} \tag{1}
\end{equation*}
$$

Marginal likelihood (evidence)

$$
P\left(f_{1}^{n} \mid e_{1}^{m}, \alpha\right)=\int p\left(\theta_{1}^{v_{E}} \mid \alpha\right) P\left(f_{1}^{n} \mid e_{1}^{m}, \theta_{1}^{v_{E}}\right) \mathrm{d} \theta_{1}^{v_{E}}
$$

MLE vs Bayesian IBM1

Incomplete data likelihood

$$
\begin{equation*}
P\left(f_{1}^{n} \mid e_{1}^{m}, \theta_{1}^{v_{E}}\right)=\prod_{j=1}^{n} \underbrace{\sum_{a_{j}=0}^{m} \overbrace{P\left(a_{j} \mid m\right) P\left(f_{j} \mid e_{a_{j}}, \theta_{1}^{v_{E}}\right)}^{P\left(f_{j}, a_{j} \mid e_{1}^{m}, \theta_{1}^{v_{E}}\right)}}_{P\left(f_{j} \mid e_{1}^{m}, \theta_{1}^{v_{E}}\right)} \tag{1}
\end{equation*}
$$

Marginal likelihood (evidence)

$$
\begin{align*}
P\left(f_{1}^{n} \mid e_{1}^{m}, \alpha\right) & =\int p\left(\theta_{1}^{v_{E}} \mid \alpha\right) P\left(f_{1}^{n} \mid e_{1}^{m}, \theta_{1}^{v_{E}}\right) \mathrm{d} \theta_{1}^{v_{E}} \\
& =\int p\left(\theta_{1}^{v_{E}} \mid \alpha\right) \prod_{j=1}^{n} \sum_{a_{j}=0}^{m} P\left(a_{j} \mid m\right) P\left(f_{j} \mid e_{a_{j}}, \theta_{e_{a_{j}}}\right) \mathrm{d} \theta_{1}^{v_{E}} \tag{2}
\end{align*}
$$

What is a Dirichlet distribution?

Dirichlet: $\theta_{e} \sim \operatorname{Dir}(\alpha)$ with $\alpha \in \mathbb{R}_{>0}^{v_{F}}$

$$
\begin{equation*}
\operatorname{Dir}\left(\theta_{e} \mid \alpha\right)=\frac{\Gamma\left(\sum_{f \in \mathcal{F}} \alpha_{f}\right)}{\prod_{f \in \mathcal{F}} \Gamma\left(\alpha_{f}\right)} \prod_{f \in \mathcal{F}} \theta_{e, f}^{\alpha_{f}-1} \tag{3}
\end{equation*}
$$

- an exponential family distribution over probability vectors
- each outcome is a v_{F}-dimensional vector of probability values that sum to 1
- can be used as a prior over the parameters of a Categorical distribution
- that is, a Dirichlet sample can be used to specify a

Categorical distribution
e.g. $F \mid E=e \sim \operatorname{Cat}\left(\theta_{e}\right)$

Use this notebook and this wikpage to learn more

Why a Dirichlet prior on parameters?

If we set the components of α to the same value, we get a symmetric Dirichlet, if that value is small the Dirichlet will prefer

- samples that are very peaked
- in other words, categorical distributions that concentrate on few outcomes

Why a Dirichlet prior on parameters?

If we set the components of α to the same value, we get a symmetric Dirichlet, if that value is small the Dirichlet will prefer

- samples that are very peaked
- in other words, categorical distributions that concentrate on few outcomes

In MLE we choose one fixed set of parameters (via EM)

Why a Dirichlet prior on parameters?

If we set the components of α to the same value, we get a symmetric Dirichlet, if that value is small the Dirichlet will prefer

- samples that are very peaked
- in other words, categorical distributions that concentrate on few outcomes

In MLE we choose one fixed set of parameters (via EM)

In Bayesian modelling we average over all possible parameters

- where each parameter set is weighted by a prior belief
- we can use this as an opportunity to, for example, express our preferences towards "peaked models"

Contrast the Dirichlet samples

Top: sparse Dirichlet prior (small alpha)

plot_dirichlet_samples(alpha=0.1, nb_samples=1)

plot_dirichlet_samples(alpha=1, nb_samples=1)

- configurations that are this sparse will be roughly as likely
- less sparse configurations will be less likely
- "the prior doesn't care where the tall bars are, as long as they are few"

Contrast the Dirichlet samples

Top: sparse Dirichlet prior (small alpha)

plot_dirichlet_samples(alpha=1, nb_samples=1)

- configurations that are this sparse will be roughly as likely
- less sparse configurations will be less likely
- "the prior doesn't care where the tall bars are, as long as they are few"

Take samples from the top Dirichlet to parameterise a Categorical distribution conditioning on English word "dog"

- locations of the bars correspond to French words in the vocabulary
- the prior basically expresses the belief that whatever "dog" translates to, there shouldn't be many likely options available in French

An alternative way to write the likelihood

We can write a likelihood based on Categorical events as follows

$$
\begin{align*}
P\left(f_{1}^{n}, a_{1}^{n} \mid e_{1}^{m}, \theta_{1}^{v_{E}}\right) & =\prod_{j=1}^{n} \underbrace{P\left(a_{j} \mid m\right)}_{\frac{1}{m+1}} \underbrace{P\left(f_{j} \mid e_{a_{j}}, \theta_{1}^{v_{E}}\right)}_{\theta_{f_{j} \mid e_{a_{j}}}} \tag{4}\\
& =\frac{1}{(m+1)^{n}} \prod_{j=1}^{n} \theta_{f_{j} \mid e_{a_{j}}}
\end{align*}
$$

An alternative way to write the likelihood

We can write a likelihood based on Categorical events as follows

$$
\begin{align*}
P\left(f_{1}^{n}, a_{1}^{n} \mid e_{1}^{m}, \theta_{1}^{v_{E}}\right) & =\prod_{j=1}^{n} \underbrace{P\left(a_{j} \mid m\right)}_{\frac{1}{m+1}} \underbrace{P\left(f_{j} \mid e_{a_{j}}, \theta_{1}^{v_{E}}\right)}_{\theta_{f_{j} \mid e_{j}}} \tag{4}\\
& =\frac{1}{(m+1)^{n}} \prod_{j=1}^{n} \theta_{f_{j} \mid e_{a_{j}}}
\end{align*}
$$

an alternative way iterates over the vocabulary of pairs, rather than over the sentence

$$
\begin{equation*}
P\left(f_{1}^{n}, a_{1}^{n} \mid e_{1}^{m}, \theta_{1}^{v_{E}}\right) \propto \prod_{\mathrm{e} \in \mathcal{E} \in \in \mathcal{F}} \prod_{\mathrm{f} \mid \mathrm{e}} \theta^{\#\left(\mathrm{e} \rightarrow \mathrm{f} \mid f_{1}^{n}, a_{1}^{n}, e_{1}^{m}\right)} \tag{5}
\end{equation*}
$$

where $\#\left(\mathrm{e} \rightarrow \mathrm{f} \mid f_{1}^{n}, a_{1}^{n}, e_{1}^{m}\right)$ counts how many times e and f are aligned in the sentence pair f_{1}^{n}, e_{1}^{m} given the alignments a_{1}^{n}

An alternative way to write the likelihood (cont)

 The new form reveals similarities to the DirichletDirichlet prior

$$
p\left(\theta_{1}^{v_{E}} \mid \alpha\right)=\overbrace{\prod_{\mathrm{e} \in \mathcal{E}} \operatorname{Dir}\left(\theta_{\mathrm{e}} \mid \alpha\right)}^{\text {independent priors }}=\prod_{\mathrm{e} \in \mathcal{E}} \frac{\Gamma\left(\sum_{\mathrm{E} \in \mathcal{F}} \alpha_{\mathrm{f}}\right)}{\prod_{\mathrm{f} \in \mathcal{F}} \Gamma\left(\alpha_{\mathrm{f}}\right)} \prod_{\mathrm{f} \in \mathcal{F}} \theta_{\mathrm{f} \mid \mathrm{e}}^{\alpha_{\mathrm{f}}-1}
$$

Multinomial (or Categorical likelihood)

$$
\begin{equation*}
P\left(f_{1}^{n}, a_{1}^{n} \mid e_{1}^{m}, \theta\right) \propto \prod_{\mathrm{e} \in \mathcal{E} \in \mathcal{F}} \prod_{\mathrm{f}} \theta_{\mathrm{f} \mid \mathrm{e}}^{\#\left(\mathrm{e} \rightarrow \mathrm{f} \mid f_{1}^{n}, a_{1}^{n}, e_{1}^{m}\right)} \tag{7}
\end{equation*}
$$

An alternative way to write the likelihood (cont)

 The new form reveals similarities to the DirichletDirichlet prior

$$
p\left(\theta_{1}^{v_{E}} \mid \alpha\right)=\overbrace{\prod_{\mathrm{e} \in \mathcal{E}} \operatorname{Dir}\left(\theta_{\mathrm{e}} \mid \alpha\right)}^{\text {independent priors }}=\prod_{\mathrm{e} \in \mathcal{E}} \frac{\Gamma\left(\sum_{\mathrm{E} \in \mathcal{F}} \alpha_{\mathrm{f}}\right)}{\prod_{\mathrm{f} \in \mathcal{F}} \Gamma\left(\alpha_{\mathrm{f}}\right)} \prod_{\mathrm{f} \in \mathcal{F}} \theta_{\mathrm{f} \mid \mathrm{e}}^{\alpha_{\mathrm{f}}-1}
$$

Multinomial (or Categorical likelihood)

$$
\begin{equation*}
P\left(f_{1}^{n}, a_{1}^{n} \mid e_{1}^{m}, \theta\right) \propto \prod_{\mathrm{e} \in \mathcal{\mathcal { E }} \in} \prod_{\mathrm{f} \in \mathcal{F}} \theta_{\mathrm{f} \mid \mathrm{e}}^{\#\left(\mathrm{e} \rightarrow \mathrm{f} \mid f_{1}^{n}, a_{1}^{n}, e_{1}^{m}\right)} \tag{7}
\end{equation*}
$$

Thus

$$
\begin{aligned}
p\left(\theta_{1}^{v_{E}}, f_{1}^{n}, a_{1}^{n} \mid e_{1}^{m}, \alpha\right) & =p\left(\theta_{1}^{v_{E}} \mid \alpha\right) p\left(f_{1}^{n}, a_{1}^{n} \mid e_{1}^{m}, \theta_{1}^{v_{E}}\right) \\
& \propto \prod_{\mathrm{e} \in \mathcal{E}} \prod_{\mathrm{f} \in \mathcal{F}} \underbrace{\theta_{\mathrm{f} \mid \mathrm{e}}^{\alpha_{\mathrm{f}}-1} \times \theta_{\mathrm{f} \mid \mathrm{e}}^{\#\left(\mathrm{e} \rightarrow \mathrm{f} \mid f_{1}^{n}, a_{1}^{n}, e_{1}^{m}\right)}}
\end{aligned}
$$

An alternative way to write the likelihood (cont)

 The new form reveals similarities to the DirichletDirichlet prior

$$
p\left(\theta_{1}^{v_{E}} \mid \alpha\right)=\overbrace{\prod_{\mathrm{e} \in \mathcal{E}} \operatorname{Dir}\left(\theta_{\mathrm{e}} \mid \alpha\right)}^{\text {independent priors }}=\prod_{\mathrm{e} \in \mathcal{E}} \frac{\Gamma\left(\sum_{\mathrm{E} \in \mathcal{F}} \alpha_{\mathrm{f}}\right)}{\prod_{\mathrm{f} \in \mathcal{F}} \Gamma\left(\alpha_{\mathrm{f}}\right)} \prod_{\mathrm{f} \in \mathcal{F}} \theta_{\mathrm{f} \mid \mathrm{e}}^{\alpha_{\mathrm{f}}-1}
$$

Multinomial (or Categorical likelihood)

$$
\begin{equation*}
P\left(f_{1}^{n}, a_{1}^{n} \mid e_{1}^{m}, \theta\right) \propto \prod_{\mathrm{e} \in \mathcal{E}} \prod_{\mathrm{f} \in \mathcal{F}} \theta_{\mathrm{f} \mid \mathrm{e}}^{\#\left(\mathrm{e} \rightarrow \mathrm{f} \mid f_{1}^{n}, a_{1}^{n}, e_{1}^{m}\right)} \tag{7}
\end{equation*}
$$

Thus

$$
\begin{align*}
& p\left(\theta_{1}^{v_{E}}, f_{1}^{n}, a_{1}^{n} \mid e_{1}^{m}, \alpha\right)=p\left(\theta_{1}^{v_{E}} \mid \alpha\right) p\left(f_{1}^{n}, a_{1}^{n} \mid e_{1}^{m}, \theta_{1}^{v_{E}}\right) \\
& \propto \prod_{\mathrm{e} \in \mathcal{E}} \prod_{\mathrm{f} \in \mathcal{F}} \underbrace{\theta_{\mathrm{f} \mid \mathrm{e}}^{\alpha_{\mathrm{f}}-1} \times \theta_{\mathrm{f} \mid \mathrm{e}}^{\#\left(\mathrm{e} \rightarrow \mathrm{f} \mid f_{1}^{n}, a_{1}^{n}, e_{1}^{m}\right)}}_{\theta_{\mathrm{f} \mid \mathrm{e}}^{\#\left(\left(\mathrm{f} \mid f_{1}^{n}, a_{1}^{n}, e_{1}^{m}\right)+\alpha_{\mathrm{f}}-1\right.}} \tag{8}
\end{align*}
$$

Bayesian IBM 1: Joint Distribution

Sentence pair: $\left(e_{0}^{m}, f_{1}^{n}\right)$

Bayesian IBM 1: Joint Distribution

Sentence pair: $\left(e_{0}^{m}, f_{1}^{n}\right)$

Bayesian IBM 1: Joint Distribution

Sentence pair: $\left(e_{0}^{m}, f_{1}^{n}\right)$

$$
\begin{aligned}
p\left(f_{1}^{n}, a_{1}^{n}, \theta_{1}^{v_{E}} \mid e_{0}^{m}, \alpha\right) & =\overbrace{P\left(a_{1}^{n} \mid m\right)}^{\text {constant }} \underbrace{\prod_{p\left(\theta_{\mathrm{e}} \mid \alpha\right)}}_{\prod_{\mathrm{e} \in \mathcal{E}}} \overbrace{\prod_{\mathrm{e} \in \mathcal{E}}}^{\text {English types }} \overbrace{\prod_{\text {French types }}^{\text {prior }}}^{\prod_{\mathrm{f} \mid \mathrm{e}}} \theta_{\theta_{\mathrm{F}}}^{\#\left(\mathrm{e} \rightarrow \mathrm{f} \mid f_{1}^{n}, a_{1}^{n}, e_{1}^{m}\right)} \\
& =P\left(a_{1}^{n} \mid m\right) \prod_{\mathrm{e}} \underbrace{\frac{\Gamma\left(\sum_{\mathrm{f}} \alpha_{\mathrm{f}}\right)}{\prod_{\mathrm{f}} \Gamma\left(\alpha_{\mathrm{f}}\right)} \prod_{\mathrm{f}}}_{\text {Dikelihood }} \underbrace{}_{\theta_{\mathrm{f} \mid \mathrm{e}}^{\alpha_{\mathrm{f}}-1} \prod_{\prod_{\mathrm{f}}} \theta_{\mathrm{f} \mid \mathrm{e}}^{\#\left(\mathrm{e} \rightarrow \mathrm{f} \mid f_{1}^{n}, a_{1}^{n}, e_{1}^{m}\right)}} \\
& \propto P\left(a_{1}^{n} \mid m\right) \prod_{\text {Categorical }}^{\prod_{\mathrm{e}}} \underbrace{}_{\mathrm{f}} \theta_{\mathrm{f} \mid \mathrm{e}}^{\#\left(\mathrm{e} \rightarrow \mathrm{f} \mid a_{1}^{n}\right)+\alpha_{\mathrm{f}}-1}
\end{aligned}
$$

Bayesian IBM 1: Joint Distribution (II)

Sentence pair: $\left(e_{0}^{m}, f_{1}^{n}\right)$

$$
\begin{equation*}
p\left(f_{1}^{n}, a_{1}^{n}, \theta_{1}^{v_{E}} \mid e_{0}^{m}, \alpha\right) \propto P\left(a_{1}^{n} \mid m\right) \prod_{\mathrm{e}} \prod_{\mathrm{f}} \theta_{\mathrm{f} \mid \mathrm{e}}^{\#\left(\mathrm{e} \rightarrow \mathrm{f} \mid f_{1}^{n}, a_{1}^{n}, e_{1}^{m}\right)+\alpha_{\mathrm{f}}-1} \tag{9}
\end{equation*}
$$

Corpus: (\mathbf{e}, \mathbf{f})

$$
\begin{align*}
p\left(\mathbf{f}, \mathbf{a}, \theta_{1}^{v_{E}} \mid \mathbf{e}, \mathbf{m}, \alpha\right) & \propto \prod_{\left(e_{0}^{m}, f_{1}^{n}, a_{1}^{n}\right)} P\left(a_{1}^{n} \mid m\right) \prod_{\mathrm{e}} \prod_{\mathrm{f}} \theta_{\mathrm{f} \mid \mathrm{e}}^{\#\left(\mathrm{e} \rightarrow \mathrm{f} \mid f_{1}^{n}, a_{1}^{n}, e_{1}^{m}\right)+\alpha_{\mathrm{f}}-1} \\
& =P(\mathbf{a} \mid \mathbf{m}) \prod_{\mathrm{e}} \prod_{\mathrm{f}} \theta_{\mathrm{f} \mid \mathrm{e}}^{\#(\mathrm{e} \rightarrow \mathrm{f} \mid \mathbf{f}, \mathbf{a}, \mathrm{e})+\alpha_{\mathrm{f}}-1} \tag{10}
\end{align*}
$$

where I use boldface to indicate the collection

Bayesian IBM 1: Inference

In Bayesian modelling there is no optimisation

- we do not pick one model
- instead, we infer a posterior distribution over unknowns and reason using all models (or a representative sample)

Bayesian IBM 1: Posterior

Intractable marginalisation

$$
\begin{equation*}
p\left(\mathbf{a}, \theta_{1}^{v_{E}} \mid \mathbf{e}, \mathbf{m}, \mathbf{f}, \alpha\right)=\frac{p(\mathbf{f}, \mathbf{a}, \theta \mid \mathbf{e}, \mathbf{m}, \alpha)}{\int \sum_{\mathbf{a}^{\prime}} p\left(\mathbf{f}, \mathbf{a}^{\prime}, \theta^{\prime} \mid \mathbf{e}, \mathbf{m}, \alpha\right) \mathrm{d} \theta^{\prime}} \tag{11}
\end{equation*}
$$

- $\theta_{1}^{v_{E}}$ are global variables: posterior depends on the entire corpus
- the summation goes over every possible alignment configuration for every possible parameter setting

Bayesian IBM 1: Approximate inference

Traditionally, we would approach posterior inference with an approximate algorithm such as Markov chain Monte Carlo

- based on sampling from the posterior by sampling one variable at a time and forming a chain whose stationary distribution is the true posterior

Mermer and Saraclar [2011] introduce Bayesian IBM1 and derive a Gibbs sampler

Bayesian IBM 1: Approximate inference

Traditionally, we would approach posterior inference with an approximate algorithm such as Markov chain Monte Carlo

- based on sampling from the posterior by sampling one variable at a time and forming a chain whose stationary distribution is the true posterior

MCMC is fully general, but can be hard to derive, and can be slow in practice

Mermer and Saraclar [2011] introduce Bayesian IBM1 and derive a Gibbs sampler

Variational inference

Optimise an auxiliary model to perform inference

Variational inference

Optimise an auxiliary model to perform inference

- postulate a family \mathcal{Q} of tractable approximations $q(z)$ to true posterior $p(z \mid x)$
where z are latent variables and x are observations

Variational inference

Optimise an auxiliary model to perform inference

- postulate a family \mathcal{Q} of tractable approximations $q(z)$ to true posterior $p(z \mid x)$ where z are latent variables and x are observations
- pick the member q^{*} of \mathcal{Q} that is closest to $p(z \mid x)$ measure closeness with KL divergence wikipage

Variational inference

Optimise an auxiliary model to perform inference

- postulate a family \mathcal{Q} of tractable approximations $q(z)$ to true posterior $p(z \mid x)$ where z are latent variables and x are observations
- pick the member q^{*} of \mathcal{Q} that is closest to $p(z \mid x)$ measure closeness with KL divergence wikpage
- use tractable q^{*} instead of p for inference and predictions

Variational inference

Optimise an auxiliary model to perform inference

- postulate a family \mathcal{Q} of tractable approximations $q(z)$ to true posterior $p(z \mid x)$ where z are latent variables and x are observations
- pick the member q^{*} of \mathcal{Q} that is closest to $p(z \mid x)$ measure closeness with KL divergence wikipage
- use tractable q^{*} instead of p for inference and predictions

Objective

$$
q *=\underset{q \in \mathcal{Q}}{\arg \min } \operatorname{KL}(q(z) \| p(z \mid x))
$$

Variational inference

Optimise an auxiliary model to perform inference

- postulate a family \mathcal{Q} of tractable approximations $q(z)$ to true posterior $p(z \mid x)$ where z are latent variables and x are observations
- pick the member q^{*} of \mathcal{Q} that is closest to $p(z \mid x)$ measure closeness with KL divergence wikipage
- use tractable q^{*} instead of p for inference and predictions

Objective

$$
\begin{align*}
q * & =\underset{q \in \mathcal{Q}}{\arg \min } \operatorname{KL}(q(z) \| p(z \mid x)) \\
& =\underset{q \in \mathcal{Q}}{\arg \min } \mathbb{E}_{q(z)}\left[\log \frac{q(z)}{p(z \mid x)}\right] \tag{12}
\end{align*}
$$

Variational Inference - Objective

The original objective is intractable due to posterior

$$
q *=\underset{q \in \mathcal{Q}}{\arg \min } \mathbb{E}_{q(z)}\left[\log \frac{q(z)}{p(z \mid x)}\right]
$$

Variational Inference - Objective

The original objective is intractable due to posterior

$$
\begin{aligned}
q * & =\underset{q \in \mathcal{Q}}{\arg \min } \mathbb{E}_{q(z)}\left[\log \frac{q(z)}{p(z \mid x)}\right] \\
& =\underset{q \in \mathcal{Q}}{\arg \min } \mathbb{E}_{q(z)}\left[\log \frac{q(z)}{\frac{p(z, x)}{p(x)}}\right]
\end{aligned}
$$

Variational Inference - Objective

The original objective is intractable due to posterior

$$
\begin{aligned}
q * & =\underset{q \in \mathcal{Q}}{\arg \min } \mathbb{E}_{q(z)}\left[\log \frac{q(z)}{p(z \mid x)}\right] \\
& =\underset{q \in \mathcal{Q}}{\arg \min } \mathbb{E}_{q(z)}\left[\log \frac{q(z)}{\frac{p(z, x)}{p(x)}}\right] \\
& =\underset{q \in \mathcal{Q}}{\arg \min } \mathbb{E}_{q(z)}\left[\log \frac{q(z)}{p(z, x)}\right]+\underbrace{\log p(x)}_{\text {constant }}
\end{aligned}
$$

Variational Inference - Objective

The original objective is intractable due to posterior

$$
\begin{aligned}
q * & =\underset{q \in \mathcal{Q}}{\arg \min } \mathbb{E}_{q(z)}\left[\log \frac{q(z)}{p(z \mid x)}\right] \\
& =\underset{q \in \mathcal{Q}}{\arg \min } \mathbb{E}_{q(z)}\left[\log \frac{q(z)}{\frac{p(z, x)}{p(x)}}\right] \\
& =\underset{q \in \mathcal{Q}}{\arg \min } \mathbb{E}_{q(z)}\left[\log \frac{q(z)}{p(z, x)}\right]+\underbrace{\log p(x)}_{\text {constant }} \\
& =\underset{q \in \mathcal{Q}}{\arg \min }-\mathbb{E}_{q(z)}\left[\log \frac{p(z, x)}{q(z)}\right]
\end{aligned}
$$

Variational Inference - Objective

The original objective is intractable due to posterior

$$
\begin{aligned}
q * & =\underset{q \in \mathcal{Q}}{\arg \min } \mathbb{E}_{q(z)}\left[\log \frac{q(z)}{p(z \mid x)}\right] \\
& =\underset{q \in \mathcal{Q}}{\arg \min } \mathbb{E}_{q(z)}\left[\log \frac{q(z)}{\frac{p(z, x)}{p(x)}}\right] \\
& =\underset{q \in \mathcal{Q}}{\arg \min } \mathbb{E}_{q(z)}\left[\log \frac{q(z)}{p(z, x)}\right]+\underbrace{\log p(x)}_{\text {constant }} \\
& =\underset{q \in \mathcal{Q}}{\arg \min }-\mathbb{E}_{q(z)}\left[\log \frac{p(z, x)}{q(z)}\right] \\
& =\underset{q \in \mathcal{Q}}{\arg \max } \mathbb{E}_{q(z)}\left[\log \frac{p(z, x)}{q(z)}\right]
\end{aligned}
$$

Variational Inference - Objective

The original objective is intractable due to posterior

$$
\begin{aligned}
q * & =\underset{q \in \mathcal{Q}}{\arg \min } \mathbb{E}_{q(z)}\left[\log \frac{q(z)}{p(z \mid x)}\right] \\
& =\underset{q \in \mathcal{Q}}{\arg \min } \mathbb{E}_{q(z)}\left[\log \frac{q(z)}{\frac{p(z, x)}{p(x)}}\right] \\
& =\underset{q \in \mathcal{Q}}{\arg \min } \mathbb{E}_{q(z)}\left[\log \frac{q(z)}{p(z, x)}\right]+\underbrace{\log p(x)}_{\text {constant }} \\
& =\underset{q \in \mathcal{Q}}{\arg \min }-\mathbb{E}_{q(z)}\left[\log \frac{p(z, x)}{q(z)}\right] \\
& =\underset{q \in \mathcal{Q}}{\arg \max } \mathbb{E}_{q(z)}\left[\log \frac{p(z, x)}{q(z)}\right] \\
& =\underset{q \in \mathcal{Q}}{\arg \max } \mathbb{E}_{q(z)}[\log p(z, x)] \underbrace{\mathbb{E}_{q(z)}[\log q(z)]}_{\mathbb{H}(q(z))}
\end{aligned}
$$

Evidence lowerbound (ELBO)

We've shown that minimising $\operatorname{KL}(q(z) \| p(z \mid x))$ is equivalent to maximising a simpler objective

$$
q *=\underset{q \in \mathcal{Q}}{\arg \max } \mathbb{E}_{q(z)}[\log p(z, x)]+\mathbb{H}(q(z))
$$

known as the evidence lowerbound

Evidence lowerbound (ELBO)

We've shown that minimising $\mathrm{KL}(q(z) \| p(z \mid x))$ is equivalent to maximising a simpler objective

$$
q *=\underset{q \in \mathcal{Q}}{\arg \max } \mathbb{E}_{q(z)}[\log p(z, x)]+\mathbb{H}(q(z))
$$

known as the evidence lowerbound

For certain pairs of distributions in the exponential family, the quantities involved are both tractable

- e.g. the entropy of a Dirichlet variable is an analytical function of the parameter α
- e.g. check this lecture scipt for analytical results for the first term

How do we design q for Bayesian IBM1?

Mean field assumption: make latent variables independent in q

$$
\begin{align*}
q\left(a_{1}^{n}, \theta_{1}^{v_{E}}\right) & =q\left(\theta_{1}^{v_{E}}\right) \times Q\left(a_{1}^{n}\right) \\
& =\prod_{\mathrm{e}} q\left(\theta_{\mathrm{e}}\right) \times \prod_{j=1}^{n} Q\left(a_{j}\right) \tag{13}
\end{align*}
$$

How do we design q for Bayesian IBM1?

Mean field assumption: make latent variables independent in q

$$
\begin{align*}
q\left(a_{1}^{n}, \theta_{1}^{v_{E}}\right) & =q\left(\theta_{1}^{v_{E}}\right) \times Q\left(a_{1}^{n}\right) \\
& =\prod_{\mathrm{e}} q\left(\theta_{\mathrm{e}}\right) \times \prod_{j=1}^{n} Q\left(a_{j}\right) \tag{13}
\end{align*}
$$

Pick convenient parametric families

$$
\begin{align*}
q\left(a_{1}^{n}, \theta_{1}^{v_{E}} \mid \phi, \lambda\right) & =\prod_{\mathrm{e}} q\left(\theta_{\mathrm{e}} \mid \lambda_{\mathrm{e}}\right) \times \prod_{j=1}^{n} Q\left(a_{j} \mid \phi_{j}\right) \\
& =\prod_{\mathrm{e}} \operatorname{Dir}\left(\theta_{\mathrm{e}} \mid \lambda_{\mathrm{e}}\right) \times \prod_{j=1}^{n} \operatorname{Cat}\left(a_{j} \mid \phi_{j}\right) \tag{14}
\end{align*}
$$

How do we design q for Bayesian IBM1?

Mean field assumption: make latent variables independent in q

$$
\begin{align*}
q\left(a_{1}^{n}, \theta_{1}^{v_{E}}\right) & =q\left(\theta_{1}^{v_{E}}\right) \times Q\left(a_{1}^{n}\right) \\
& =\prod_{\mathrm{e}} q\left(\theta_{\mathrm{e}}\right) \times \prod_{j=1}^{n} Q\left(a_{j}\right) \tag{13}
\end{align*}
$$

Pick convenient parametric families

$$
\begin{align*}
q\left(a_{1}^{n}, \theta_{1}^{v_{E}} \mid \phi, \lambda\right) & =\prod_{\mathrm{e}} q\left(\theta_{\mathrm{e}} \mid \lambda_{\mathrm{e}}\right) \times \prod_{j=1}^{n} Q\left(a_{j} \mid \phi_{j}\right) \\
& =\prod_{\mathrm{e}} \operatorname{Dir}\left(\theta_{\mathrm{e}} \mid \lambda_{\mathrm{e}}\right) \times \prod_{j=1}^{n} \operatorname{Cat}\left(a_{j} \mid \phi_{j}\right) \tag{14}
\end{align*}
$$

Find optimum parameters under the ELBO

- one Dirichlet parameter vector λ_{e} per English type λ_{e} consists of v_{F} strictly positive numbers
- one Categorical parameter vector ϕ_{j} per alignment link ϕ_{j} consists of a probability vector over $m+1$ positions

ELBO for Bayesian IBM1

Objective
$(\hat{\lambda}, \hat{\phi})=\underset{\lambda, \phi}{\arg \max } \mathbb{E}_{q}\left[\log p\left(f_{1}^{n}, a_{1}^{n}, \theta_{1}^{v_{E}} \mid e_{1}^{m}, \alpha\right)\right]+\mathbb{H}(q)$

ELBO for Bayesian IBM1

Objective

$$
\begin{align*}
&(\hat{\lambda}, \hat{\phi})=\underset{\lambda, \phi}{\arg \max } \mathbb{E}_{q}\left[\log p\left(f_{1}^{n}, a_{1}^{n}, \theta_{1}^{v_{E}} \mid e_{1}^{m}, \alpha\right)\right]+\mathbb{H}(q) \\
&=\underset{\lambda, \phi}{\arg \max } \sum_{j=1}^{m} \mathbb{E}_{q}\left[\log P\left(a_{j} \mid m\right) P\left(f_{j} \mid e_{a_{j}}, \theta_{1}^{v_{E}}\right)-\log Q\left(a_{j} \mid \phi_{j}\right)\right] \\
&+\sum_{e} \underbrace{\mathbb{E}_{q}\left[\log p\left(\theta_{e} \mid \alpha\right)-\log q\left(\theta_{e} \mid \lambda_{e}\right)\right]}_{-\operatorname{KL}\left(q\left(\theta_{e} \mid \lambda_{e}\right) \| p\left(\theta_{e} \mid \alpha\right)\right)} \tag{15}
\end{align*}
$$

VB for IBM1

Optimal $Q\left(a_{j} \mid \phi_{j}\right)$

$$
\begin{equation*}
\phi_{j k}=\frac{\exp \left(\Psi\left(\lambda_{f_{j} \mid e_{k}}\right)-\Psi\left(\sum_{\mathrm{f}} \lambda_{\mathrm{f} \mid e_{k}}\right)\right)}{\sum_{i=0}^{m} \exp \left(\Psi\left(\lambda_{f_{j} \mid e_{i}}\right)-\Psi\left(\sum_{\mathrm{f}} \lambda_{\mathrm{f} \mid e_{i}}\right)\right)} \tag{16}
\end{equation*}
$$

where $\Psi(\cdot)$ is the diramma suction

VB for IBM1

Optimal $Q\left(a_{j} \mid \phi_{j}\right)$

$$
\begin{equation*}
\phi_{j k}=\frac{\exp \left(\Psi\left(\lambda_{f_{j} \mid e_{k}}\right)-\Psi\left(\sum_{\mathrm{f}} \lambda_{\mathrm{f} \mid e_{k}}\right)\right)}{\sum_{i=0}^{m} \exp \left(\Psi\left(\lambda_{f_{j} \mid e_{i}}\right)-\Psi\left(\sum_{\mathrm{f}} \lambda_{\mathrm{f} \mid e_{i}}\right)\right)} \tag{16}
\end{equation*}
$$

where $\Psi(\cdot)$ is the ciramma fincion
Optimal $q\left(\theta_{e} \mid \lambda_{e}\right)$

$$
\begin{equation*}
\lambda_{\mathrm{f} \mid \mathrm{e}}=\alpha_{\mathrm{f}}+\sum_{\left(e_{0}^{m}, f_{1}^{n}\right)} \sum_{j=1}^{n} \mathbb{E}_{Q\left(a_{j} \mid \phi_{j}\right)}\left[\#\left(\mathrm{e} \rightarrow \mathrm{f} \mid f_{j}, a_{j}, e_{1}^{m}\right)\right] \tag{17}
\end{equation*}
$$

Algorithmically

E-step as in MLE IBM1, however, using $Q\left(a_{j} \mid \phi_{j}\right)$ instead of $P\left(a_{j} \mid e_{0}^{m}, f_{j}, \theta_{1}^{v_{E}}\right)$

- maintain a table of parameters λ
- where in Frequentist EM you would use θ, use instead $\hat{\theta}$
- $\hat{\theta}_{\mathrm{f} \mid \mathrm{e}}=\exp \left(\Psi\left(\lambda_{\mathrm{f} \mid \mathrm{e}}\right)-\Psi\left(\sum_{\mathrm{f}^{\prime}} \lambda_{\mathrm{f}^{\prime} \mid \mathrm{e}}\right)\right)$
(note these are not normalised probability vectors)

Algorithmically

E-step as in MLE IBM1, however, using $Q\left(a_{j} \mid \phi_{j}\right)$ instead of $P\left(a_{j} \mid e_{0}^{m}, f_{j}, \theta_{1}^{v_{E}}\right)$

- maintain a table of parameters λ
- where in Frequentist EM you would use θ, use instead $\hat{\theta}$
- $\hat{\theta}_{\mathrm{f} \mid \mathrm{e}}=\exp \left(\Psi\left(\lambda_{\mathrm{f} \mid \mathrm{e}}\right)-\Psi\left(\sum_{\mathrm{f}^{\prime}} \lambda_{\mathrm{f}^{\prime} \mid \mathrm{e}}\right)\right)$
(note these are not normalised probability vectors)

M-step

- $\lambda_{\mathrm{f} \mid \mathrm{e}}=\alpha_{\mathrm{f}}+\mathbb{E}[\#(\mathrm{e} \rightarrow \mathrm{f})]$
where expected counts come from E-step

References I

Coskun Mermer and Murat Saraclar. Bayesian word alignment for statistical machine translation. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pages 182-187, Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/P11-2032.

