Lexical alignment: IBM models 1 and 2 MLE via EM for categorical distributions

Wilker Aziz

April 11, 2017

Translation data

Let's assume we are confronted with a new language and luckily we managed to obtain some sentence-aligned data

the black dog	$\square \circledast$
the nice dog	$\square \cup$
the black cat	$\square \circledast$
a dog chasing a cat	$\square \triangleleft \square$

Translation data

Let's assume we are confronted with a new language and luckily we managed to obtain some sentence-aligned data

the black dog	$\square \circledast$
the nice dog	$\square \cup$
the black cat	$\square \circledast$
a dog chasing a cat	$\square \triangleleft \square$

Is there anything we could say about this language?

Translation by analogy

the black dog	$\square \circledast$
the nice dog	$\square \cup$
the black cat	$\square \circledast$
a dog chasing a cat	$\square \triangleleft \square$

A few hypotheses:

Translation by analogy

the black dog	$\square \circledast$
the nice dog	$\square \cup$
the black cat	$\square \circledast$
a dog chasing a cat	$\square \triangleleft \square$

A few hypotheses:

- $\square \Longleftrightarrow \operatorname{dog}$

Translation by analogy

the black dog	$\square \circledast$
the nice dog	$\square \cup$
the black cat	$\square \circledast$
a dog chasing a cat	$\square \triangleleft \square$

A few hypotheses:

- $\square \Longleftrightarrow$ dog
- $\cdot \Longleftrightarrow$ cat

Translation by analogy

the black dog	$\square \circledast$
the nice dog	$\square \cup$
the black cat	$\square \circledast$
a dog chasing a cat	$\square \triangleleft \square$

A few hypotheses:

- $\square \Longleftrightarrow$ dog
- $\quad \Longleftrightarrow$ cat
- $\circledast \Longleftrightarrow$ black

Translation by analogy

the black dog	$\square \circledast$
the nice dog	$\square \cup$
the black cat	$\square \circledast$
a dog chasing a cat	$\square \triangleleft \square$

A few hypotheses:

- $\square \Longleftrightarrow$ dog
- $\square \Longleftrightarrow$ cat
- $\circledast \Longleftrightarrow$ black
- nouns seem to preceed adjectives

Translation by analogy

the black dog	$\square \circledast$
the nice dog	$\square \cup$
the black cat	$\square \circledast$
a dog chasing a cat	$\square \triangleleft \square$

A few hypotheses:

- $\square \Longleftrightarrow$ dog
$\bullet \square \Longleftrightarrow$ cat
- $\circledast \Longleftrightarrow$ black
- nouns seem to preceed adjectives
- determines are probably not expressed

Translation by analogy

the black dog	$\square \circledast$
the nice dog	$\square \cup$
the black cat	$\square \circledast$
a dog chasing a cat	$\square \triangleleft \square$

A few hypotheses:

- $\square \Longleftrightarrow$ dog
- $\square \Longleftrightarrow$ cat
- $\circledast \Longleftrightarrow$ black
- nouns seem to preceed adjectives
- determines are probably not expressed
- chasing may be expressed by \triangleleft and perhaps this language is OVS

Translation by analogy

the black dog	$\square \circledast$
the nice dog	$\square \cup$
the black cat	$\square \circledast$
a dog chasing a cat	$\square \triangleleft \square$

A few hypotheses:

- $\square \Longleftrightarrow$ dog
- $\square \Longleftrightarrow$ cat
- $\circledast \Longleftrightarrow$ black
- nouns seem to preceed adjectives
- determines are probably not expressed
- chasing may be expressed by \triangleleft and perhaps this language is OVS
- or perhaps chasing is realised by a verb with swapped arguments

Probabilistic lexical alignment models

This lecture is about operationalising this intuition

- through a probabilistic learning algorithm
- for a non-probabilistic approach see for example [Lardilleux and Lepage, 2009]

Content

Lexical alignment

Mixture models

IBM model 1

IBM model 2

Remarks

Word-to-word alignments

Imagine you are given a text

the black dog	o cão preto
the nice dog	o cão amigo
the black cat	o gato preto
a dog chasing a cat	um cão perseguindo um gato

Word-to-word alignments

Now imagine the French words were replaced by placeholders

the black dog	$F_{1} F_{2}$	F_{3}	
the nice dog	F_{1}	F_{2}	F_{3}
F_{1}	F_{2}	F_{3}	
the black cat	F_{3}		
a dog chasing a cat	F_{2}	F_{3}	F_{4}

Word-to-word alignments

Now imagine the French words were replaced by placeholders
$\left.\begin{array}{c|ccl}\text { the black dog } & F_{1} & F_{2} & F_{3} \\ \text { the nice dog } & F_{1} & F_{2} & F_{3} \\ \text { the black cat } & F_{1} & F_{2} & F_{3}\end{array}\right]$
and suppose our task is to have a model explain the original data

Word-to-word alignments

Now imagine the French words were replaced by placeholders
$\left.\begin{array}{c|ccl}\text { the black dog } & F_{1} & F_{2} & F_{3} \\ \text { the nice dog } & F_{1} & F_{2} & F_{3} \\ \text { the black cat } & F_{1} & F_{2} & F_{3}\end{array}\right]$
and suppose our task is to have a model explain the original data by generating each French word from exactly one English word

Generative story

For each sentence pair independently,

1. observe an English sentence e_{1}, \cdots, e_{m} and a French sentence length n
2. for each French word position j from 1 to n
2.1 select an English position a_{j}
2.2 conditioned on the English word $e_{a_{j}}$, generate f_{j}

Generative story

For each sentence pair independently,

1. observe an English sentence e_{1}, \cdots, e_{m} and a French sentence length n
2. for each French word position j from 1 to n
2.1 select an English position a_{j}
2.2 conditioned on the English word $e_{a_{j}}$, generate f_{j}

We have introduced an alignment which is not directly visible in the data

Data augmentation

Observations:
the black dog | o cão preto

Imagine data is made of pairs: $\left(a_{j}, f_{j}\right)$ and $e_{a_{j}} \rightarrow f_{j}$

Data augmentation

Observations:

> the black dog | o cão preto

Imagine data is made of pairs: $\left(a_{j}, f_{j}\right)$ and $e_{a_{j}} \rightarrow f_{j}$
the black dog $\mid\left(A_{1}, E_{A_{1}} \rightarrow F_{1}\right)\left(A_{2}, E_{A_{2}} \rightarrow F_{2}\right)\left(A_{3}, E_{A_{3}} \rightarrow F_{3}\right)$

Data augmentation

Observations:
the black dog | o cão preto

Imagine data is made of pairs: $\left(a_{j}, f_{j}\right)$ and $e_{a_{j}} \rightarrow f_{j}$
the black dog $\mid\left(1, E_{A_{1}} \rightarrow F_{1}\right)\left(A_{2}, E_{A_{2}} \rightarrow F_{2}\right)\left(A_{3}, E_{A_{3}} \rightarrow F_{3}\right)$

Data augmentation

Observations:
the black dog | o cão preto

Imagine data is made of pairs: $\left(a_{j}, f_{j}\right)$ and $e_{a_{j}} \rightarrow f_{j}$
the black dog $\mid(1$, the $\rightarrow 0)\left(A_{2}, E_{A_{2}} \rightarrow F_{2}\right)\left(A_{3}, E_{A_{3}} \rightarrow F_{3}\right)$

Data augmentation

Observations:
the black dog | o cão preto

Imagine data is made of pairs: $\left(a_{j}, f_{j}\right)$ and $e_{a_{j}} \rightarrow f_{j}$
the black dog $\mid(1$, the $\rightarrow 0)\left(3, E_{A_{2}} \rightarrow F_{2}\right)\left(A_{3}, E_{A_{3}} \rightarrow F_{3}\right)$

Data augmentation

Observations:
the black dog | o cão preto

Imagine data is made of pairs: $\left(a_{j}, f_{j}\right)$ and $e_{a_{j}} \rightarrow f_{j}$
the black dog $\mid(1$, the $\rightarrow 0)(3, \operatorname{dog} \rightarrow$ cão $)\left(A_{3}, E_{A_{3}} \rightarrow F_{3}\right)$

Data augmentation

Observations:
the black dog | o cão preto

Imagine data is made of pairs: $\left(a_{j}, f_{j}\right)$ and $e_{a_{j}} \rightarrow f_{j}$
the black dog $\mid(1$, the $\rightarrow 0)(3, \operatorname{dog} \rightarrow$ cão $)\left(2, E_{A_{3}} \rightarrow F_{3}\right)$

Data augmentation

Observations:
the black dog | o cão preto

Imagine data is made of pairs: $\left(a_{j}, f_{j}\right)$ and $e_{a_{j}} \rightarrow f_{j}$
the black dog $\mid(1$, the $\rightarrow 0)(3$, dog \rightarrow cão $)(2$, black \rightarrow preto $)$

Data augmentation

Observations:
the black dog | o cão preto

Imagine data is made of pairs: $\left(a_{j}, f_{j}\right)$ and $e_{a_{j}} \rightarrow f_{j}$
the black $\operatorname{dog} \mid(1$, the $\rightarrow 0)(3, \operatorname{dog} \rightarrow$ cão $)(2$, black \rightarrow preto $)$
the black dog $\mid(1$, the $\rightarrow 0)(1$, the \rightarrow cão $)(1$, the \rightarrow preto $)$

Data augmentation

Observations:
the black dog | o cão preto

Imagine data is made of pairs: $\left(a_{j}, f_{j}\right)$ and $e_{a_{j}} \rightarrow f_{j}$
the black dog $\mid(1$, the $\rightarrow 0)(3$, dog \rightarrow cão $)(2$, black \rightarrow preto $)$
the black dog $\mid(1$, the $\rightarrow 0)(1$, the \rightarrow cão $)(1$, the \rightarrow preto $)$
the black dog $\mid\left(a_{1}, e_{a_{1}} \rightarrow f_{1}\right)\left(a_{2}, e_{a_{2}} \rightarrow f_{2}\right)\left(a_{3}, e_{a_{3}} \rightarrow f_{3}\right)$

Content

Lexical alignment

Mixture models

IBM model 1

IBM model 2

Remarks

Mixture models: generative story

- c mixture components
- each defines a distribution over the same data space \mathcal{X}
- plus a distribution over components themselves

Mixture models: generative story

- c mixture components
- each defines a distribution over the same data space \mathcal{X}
- plus a distribution over components themselves

Generative story

1. select a mixture component $z \sim P(Z)$
2. generate an observation from it $x \sim P(X \mid Z=z)$

Mixture models: likelihood

Incomplete-data likelihood

$$
\begin{align*}
P\left(x_{1}^{m}\right) & =\prod_{i=1}^{m} P\left(x_{i}\right) \tag{1}\\
& =\prod_{i=1}^{m} \sum_{z=1}^{c} \underbrace{P\left(X=x_{i}, Z=z\right)}_{\text {complete-data likelihood }} \tag{2}\\
& =\prod_{i=1}^{m} \sum_{z=1}^{c} P(Z=z) P\left(X=x_{i} \mid Z=z\right) \tag{3}
\end{align*}
$$

Interpretation

Missing data

- Let Z take one of c mixture components
- Assume data consists of pairs (x, z)
- x is always observed
- y is always missing

Interpretation

Missing data

- Let Z take one of c mixture components
- Assume data consists of pairs (x, z)
- x is always observed
- y is always missing

Inference: posterior distribution over possible Z for each x

$$
\begin{align*}
P(Z=z \mid X=x) & =\frac{P(Z=z, X=x)}{\sum_{z^{\prime}=1}^{c} P\left(Z=z^{\prime}, X=x\right)} \tag{4}\\
& =\frac{P(Z=z) P(X=x \mid Z=z)}{\sum_{z^{\prime}=1}^{c} P\left(Z=z^{\prime}\right) P\left(X=x \mid Z=z^{\prime}\right)} \tag{5}
\end{align*}
$$

Non-identifiability

Different parameter settings, same distribution
Suppose $\mathcal{X}=\{a, b\}$ and $c=2$
and let $P(Z=1)=P(Z=2)=0.5$

Z	$X=a$	$X=b$
1	0.2	0.8
2	0.7	0.3
$P(X)$	0.45	0.55

Z	$X=a$	$X=b$
1	0.7	0.3
2	0.2	0.8
$P(X)$	0.45	0.55

Non-identifiability

Different parameter settings, same distribution
Suppose $\mathcal{X}=\{a, b\}$ and $c=2$
and let $P(Z=1)=P(Z=2)=0.5$

Z	$X=a$	$X=b$
1	0.2	0.8
2	0.7	0.3
$P(X)$	0.45	0.55

Z	$X=a$	$X=b$
1	0.7	0.3
2	0.2	0.8
$P(X)$	0.45	0.55

Problem for parameter estimation by hillclimbing

Maximum likelihood estimation

Suppose a dataset $\mathcal{D}=\left\{x^{(1)}, x^{(2)}, \cdots, x^{(m)}\right\}$

Maximum likelihood estimation

Suppose a dataset $\mathcal{D}=\left\{x^{(1)}, x^{(2)}, \cdots, x^{(m)}\right\}$
Suppose $P(X)$ is one of a parametric family with parameters θ

Maximum likelihood estimation

Suppose a dataset $\mathcal{D}=\left\{x^{(1)}, x^{(2)}, \cdots, x^{(m)}\right\}$
Suppose $P(X)$ is one of a parametric family with parameters θ Likelihood of iid observations

$$
P(\mathcal{D})=\prod_{i=1}^{m} P_{\theta}\left(X=x^{(i)}\right)
$$

Maximum likelihood estimation

Suppose a dataset $\mathcal{D}=\left\{x^{(1)}, x^{(2)}, \cdots, x^{(m)}\right\}$
Suppose $P(X)$ is one of a parametric family with parameters θ Likelihood of iid observations

$$
P(\mathcal{D})=\prod_{i=1}^{m} P_{\theta}\left(X=x^{(i)}\right)
$$

the score function is

$$
l(\theta)=\sum_{i=1}^{m} \log P_{\theta}\left(X=x^{(i)}\right)
$$

Maximum likelihood estimation

Suppose a dataset $\mathcal{D}=\left\{x^{(1)}, x^{(2)}, \cdots, x^{(m)}\right\}$
Suppose $P(X)$ is one of a parametric family with parameters θ Likelihood of iid observations

$$
P(\mathcal{D})=\prod_{i=1}^{m} P_{\theta}\left(X=x^{(i)}\right)
$$

the score function is

$$
l(\theta)=\sum_{i=1}^{m} \log P_{\theta}\left(X=x^{(i)}\right)
$$

then we choose

$$
\theta^{\star}=\underset{\theta}{\arg \max } l(\theta)
$$

MLE for categorical: estimation from fully observed data

Suppose we have complete data

- $\mathcal{D}_{\text {complete }}=\left\{\left(x^{(1)}, z^{(1)}\right), \ldots,\left(x^{(m)}, z^{(m)}\right)\right\}$

MLE for categorical: estimation from fully observed data

Suppose we have complete data

- $\mathcal{D}_{\text {complete }}=\left\{\left(x^{(1)}, z^{(1)}\right), \ldots,\left(x^{(m)}, z^{(m)}\right)\right\}$

Then, for a categorical distribution

$$
P(X=x \mid Z=z)=\theta_{z, x}
$$

and $n\left(z, x \mid \mathcal{D}_{\text {complete }}\right)=$ count of (z, x) in $\mathcal{D}_{\text {complete }}$
MLE solution:

$$
\theta_{z, x}=\frac{n\left(z, x \mid \mathcal{D}_{\text {complete }}\right)}{\sum_{x^{\prime}} n\left(z, x^{\prime} \mid \mathcal{D}_{\text {complete }}\right)}
$$

MLE for categorical: estimation from incomplete data

Expectation-Maximisation algorithm

[Dempster et al., 1977]
E-step:

- for every observation x, imagine that every possible latent assignment z happened with probability $P_{\theta}(Z=z \mid X=x)$

$$
\mathcal{D}_{\text {completed }}=\{(x, Z=1), \ldots,(x, Z=c): x \in \mathcal{D}\}
$$

MLE for categorical: estimation from incomplete data Expectation-Maximisation algorithm
[Dempster et al., 1977]
M-step:

- reestimate θ as to climb the likelihood surface
- for categorical distributions $P(X=x \mid Z=z)=\theta_{z, x}$
z and x are categorical
$0 \leq \theta_{z, x} \leq 1 \quad$ and $\quad \sum_{x \in X} \theta_{z, x}=1$

$$
\begin{align*}
\theta_{z, x} & =\frac{\mathbb{E}\left[n\left(z \rightarrow x \mid \mathcal{D}_{\text {completed }}\right)\right]}{\sum_{x^{\prime}} \mathbb{E}\left[n\left(z \rightarrow x^{\prime} \mid \mathcal{D}_{\text {completed }}\right)\right]} \tag{6}\\
& =\frac{\sum_{i=1}^{m} \sum_{z^{\prime}} P\left(z^{\prime} \mid x^{(i)}\right) \mathbb{1}_{z}\left(z^{\prime}\right) \mathbb{1}_{x}\left(x^{(i)}\right)}{\sum_{i=1}^{m} \sum_{x^{\prime}} \sum_{z^{\prime}} P\left(z^{\prime} \mid x^{(i)}\right) \mathbb{1}_{z}\left(z^{\prime}\right) \mathbb{1}_{x^{\prime}}\left(x^{(i)}\right)} \tag{7}\\
& =\frac{\sum_{i=1}^{m} P\left(z \mid x^{(i)}\right) \mathbb{1}_{x}\left(x^{(i)}\right)}{\sum_{i=1}^{m} \sum_{x^{\prime}} P\left(z \mid x^{(i)}\right) \mathbb{1}_{x^{\prime}}\left(x^{(i)}\right)} \tag{8}
\end{align*}
$$

Content

Lexical alignment

Mixture models

IBM model 1

IBM model 2

Remarks

IBM1: a constrained mixture model

Constrained mixture model

IBM1: a constrained mixture model

Constrained mixture model

- mixture components are English words

IBM1: a constrained mixture model

Constrained mixture model

- mixture components are English words
- but only English words that appear in the English sentence can be assigned

IBM1: a constrained mixture model

Constrained mixture model

- mixture components are English words
- but only English words that appear in the English sentence can be assigned
- a_{j} acts as an indicator for the mixture component that generates French word f_{j}
- e_{0} is occupied by a special NulL component

Parameterisation

Alignment distribution: uniform

$$
\begin{equation*}
P(A \mid M=m, N=n)=\frac{1}{m+1} \tag{9}
\end{equation*}
$$

Lexical distribution: categorical

$$
\begin{equation*}
P(F \mid E=e)=\operatorname{Cat}\left(F \mid \theta_{e}\right) \tag{10}
\end{equation*}
$$

- where $\theta_{e} \in \mathbb{R}^{v_{F}}$
- $0 \leq \theta_{e, f} \leq 1$
- $\sum_{f} \theta_{e, f}=1$

IBM1: incomplete-data likelihood

Incomplete-data likelihood

$$
\begin{align*}
P\left(f_{1}^{n} \mid e_{0}^{m}\right) & =\sum_{a_{1}=0}^{m} \cdots \sum_{a_{n}=0}^{m} P\left(f_{1}^{n}, a_{1}^{n} \mid e_{a_{j}}\right) \tag{11}\\
& =\sum_{a_{1}=0}^{m} \cdots \sum_{a_{n}=0}^{m} \prod_{j=1}^{n} P\left(a_{j} \mid m, n\right) P\left(f_{j} \mid e_{a_{j}}\right) \tag{12}\\
& =\prod_{j=1}^{n} \sum_{a_{j}=0}^{m} P\left(a_{j} \mid m, n\right) P\left(f_{j} \mid e_{a_{j}}\right) \tag{13}
\end{align*}
$$

IBM1: posterior

Posterior

$$
\begin{equation*}
P\left(a_{1}^{n} \mid f_{1}^{n}, e_{0}^{m}\right)=\frac{P\left(f_{1}^{n}, a_{1}^{n} \mid e_{0}^{m}\right)}{P\left(f_{1}^{n} \mid e_{0}^{m}\right)} \tag{14}
\end{equation*}
$$

Factorised

$$
\begin{equation*}
P\left(a_{j} \mid f_{1}^{n}, e_{0}^{m}\right)=\frac{P\left(a_{j} \mid m, n\right) P\left(f_{j} \mid e_{a_{j}}\right)}{\sum_{i=0}^{m} P(i \mid m, n) P\left(f_{j} \mid e_{i}\right)} \tag{15}
\end{equation*}
$$

MLE via EM

E-step:

$$
\begin{align*}
\mathbb{E}\left[n\left(\mathrm{e} \rightarrow \mathrm{f} \mid A_{1}^{n}\right)\right] & =\sum_{a_{1}=0}^{m} \cdots \sum_{a_{n}=0}^{m} P\left(a_{1}^{n} \mid f_{1}^{n}, e_{0}^{m}\right) n\left(\mathrm{e} \rightarrow \mathrm{f} \mid A_{1}^{n}\right) \tag{16}\\
& =\sum_{a_{1}=0}^{m} \cdots \sum_{A_{n}=0}^{m} \prod_{j=1}^{n} P\left(a_{j} \mid f_{1}^{n}, e_{0}^{m}\right) \mathbb{1}_{\mathrm{e}}\left(e_{a_{j}}\right) \mathbb{1}_{\mathrm{f}}\left(f_{j}\right) \tag{17}\\
& =\prod_{j=1}^{n} \sum_{i=0}^{m} P\left(A_{j}=i \mid f_{1}^{n}, e_{0}^{m}\right) \mathbb{1}_{\mathrm{e}}\left(e_{i}\right) \mathbb{1}_{\mathrm{f}}\left(f_{j}\right) \tag{18}
\end{align*}
$$

M-step:

$$
\begin{equation*}
\theta_{e, f}=\frac{\mathbb{E}\left[n\left(e \rightarrow f \mid A_{1}^{n}\right)\right]}{\sum_{f^{\prime}} \mathbb{E}\left[n\left(e \rightarrow f^{\prime} \mid A_{1}^{n}\right)\right]} \tag{19}
\end{equation*}
$$

EM algorithm

Repeat until convergence to a local optimum

1. For each sentence pair
1.1 compute posterior per alignment link
1.2 accumulate fractional counts
2. Normalise counts for each English word

Content

Lexical alignment

Mixture models

IBM model 1

IBM model 2

Remarks

Alignment distribution

Positional distribution

$$
P\left(A_{j} \mid M=m, N=n\right)=\operatorname{Cat}\left(A \mid \lambda_{j, m, n}\right)
$$

- one distribution for each tuple (j, m, n)
- support must include length of longest English sentence
- extremely over-parameterised!

Alignment distribution

Positional distribution

$$
P\left(A_{j} \mid M=m, N=n\right)=\operatorname{Cat}\left(A \mid \lambda_{j, m, n}\right)
$$

- one distribution for each tuple (j, m, n)
- support must include length of longest English sentence
- extremely over-parameterised!

Jump distribution
[Vogel et al., 1996]

- define a jump function $\delta\left(a_{j}, j, m, n\right)=a_{j}-\left\lfloor j \frac{m}{n}\right\rfloor$
- $P\left(A_{j} \mid m, n\right)=\operatorname{Cat}(\Delta \mid \lambda)$
- Δ takes values from -longest to +longest

Content

> Lexical alignment

> Mixture models

> IBM model 1

> IBM model 2

Remarks

Note on terminology: source/target vs French/English

From an alignment model perspective all that matters is

- we condition on one language and generate the other
- in IBM models terminology, we condition on English and generate French

From a noisy channel perspective, where we want to translate a source sentence f_{1}^{n} into some target sentence e_{1}^{m}

- Bayes rule decomposes $p\left(e_{1}^{m} \mid f_{1}^{n}\right) \propto p\left(f_{1}^{n} \mid e_{1}^{m}\right) p\left(e_{1}^{m}\right)$
- train $p\left(e_{1}^{m}\right)$ and $p\left(f_{1}^{n} \mid e_{1}^{m}\right)$ independently
- language model: $p\left(e_{1}^{m}\right)$
- alignment model: $p\left(f_{1}^{n} \mid e_{1}^{m}\right)$
- note that the alignment model conditions on the target sentence (English) and generates the source sentence (French)

Limitations of IBM1-2

- too strong independence assumptions
- categorical parameterisation suffers from data sparsity
- EM suffers from local optima

Extensions

Fertility, distortion, and concepts [Brown et al., 1993]
Dirichlet priors and posterior inference [Mermer and Saraclar, 2011]

- + no NulL words [Schulz et al., 2016]
- + HMM and efficient sampler [Schulz and Aziz, 2016]

Log-linear distortion parameters and variational Bayes
[Dyer et al., 2013]
First-order dependency (HMM) [Vogel et al., 1996]

- E-step requires dynamic programming [Baum and Petrie, 1966]

References I

L. E. Baum and T. Petrie. Statistical inference for probabilistic functions of finite state Markov chains. Annals of Mathematical Statistics, 37:1554-1563, 1966.

Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della Pietra, and Robert L. Mercer. The mathematics of statistical machine translation: parameter estimation. Computational Linguistics, 19 (2):263-311, June 1993. ISSN 0891-2017. URL http://dl.acm.org/citation.cfm?id=972470.972474.
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society, 39(1):1-38, 1977.

References II

Chris Dyer, Victor Chahuneau, and Noah A. Smith. A simple, fast, and effective reparameterization of ibm model 2. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 644-648, Atlanta, Georgia, June 2013. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/N13-1073.
Adrien Lardilleux and Yves Lepage. Sampling-based multilingual alignment. In Proceedings of the International Conference RANLP-2009, pages 214-218, Borovets, Bulgaria, September 2009. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/R09-1040.

References III

Coskun Mermer and Murat Saraclar. Bayesian word alignment for statistical machine translation. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pages 182-187, Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/P11-2032.
Philip Schulz and Wilker Aziz. Fast collocation-based bayesian hmm word alignment. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pages 3146-3155, Osaka, Japan, December 2016. The COLING 2016 Organizing Committee. URL http://aclweb.org/anthology/C16-1296.

References IV

Philip Schulz, Wilker Aziz, and Khalil Sima'an. Word alignment without null words. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 169-174, Berlin, Germany, August 2016. Association for Computational Linguistics. URL http://anthology.aclweb.org/P16-2028.
Stephan Vogel, Hermann Ney, and Christoph Tillmann.
HMM-based word alignment in statistical translation. In
Proceedings of the 16th Conference on Computational
Linguistics - Volume 2, COLING '96, pages 836-841,
Stroudsburg, PA, USA, 1996. Association for Computational Linguistics. doi: 10.3115/993268.993313. URL
http://dx.doi.org/10.3115/993268.993313.

