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Translation data

Let’s assume we are confronted with a new language
and luckily we managed to obtain some sentence-aligned data

the black dog � ~
the nice dog � ∪
the black cat � ~

a dog chasing a cat � / �

Is there anything we could say about this language?
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Translation by analogy

the black dog � ~
the nice dog � ∪
the black cat � ~

a dog chasing a cat � / �

A few hypotheses:

I � ⇐⇒ dog

I � ⇐⇒ cat

I ~ ⇐⇒ black

I nouns seem to preceed adjectives

I determines are probably not expressed

I chasing may be expressed by /
and perhaps this language is OVS

I or perhaps chasing is realised by a verb with swapped
arguments
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Probabilistic lexical alignment models

This lecture is about operationalising this intuition

I through a probabilistic learning algorithm

I for a non-probabilistic approach see for example
[Lardilleux and Lepage, 2009]
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Word-to-word alignments

Imagine you are given a text

the black dog o cão preto
the nice dog o cão amigo
the black cat o gato preto

a dog chasing a cat um cão perseguindo um gato
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Word-to-word alignments

Now imagine the French words were replaced by placeholders

the black dog F1 F2 F3

the nice dog F1 F2 F3

the black cat F1 F2 F3

a dog chasing a cat F1 F2 F3 F4 F5
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the nice dog F1 F2 F3

the black cat F1 F2 F3

a dog chasing a cat F1 F2 F3 F4 F5
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Generative story

For each sentence pair independently,

1. observe an English sentence e1, · · · , em
and a French sentence length n

2. for each French word position j from 1 to n

2.1 select an English position aj
2.2 conditioned on the English word eaj

, generate fj

We have introduced an alignment
which is not directly visible in the data
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Data augmentation

Observations:

the black dog o cão preto

Imagine data is made of pairs: (aj , fj) and eaj → fj
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the black dog (1, the→ o) (3, dog→ cão) (2, black→ preto)

the black dog (1, the→ o) (1, the→ cão) (1, the→ preto)
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Mixture models: generative story

xz

m

I c mixture components

I each defines a distribution over the same data space X
I plus a distribution over components themselves

Generative story

1. select a mixture component z ∼ P (Z)

2. generate an observation from it x ∼ P (X|Z = z)
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Mixture models: likelihood

xz

m

Incomplete-data likelihood

P (xm1 ) =

m∏
i=1

P (xi) (1)

=
m∏
i=1

c∑
z=1

P (X = xi, Z = z)︸ ︷︷ ︸
complete-data likelihood

(2)

=

m∏
i=1

c∑
z=1

P (Z = z)P (X = xi|Z = z) (3)
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Interpretation

Missing data

I Let Z take one of c mixture components

I Assume data consists of pairs (x, z)

I x is always observed

I y is always missing

Inference: posterior distribution over possible Z for each x

P (Z = z|X = x) =
P (Z = z,X = x)∑c

z′=1 P (Z = z′, X = x)
(4)

=
P (Z = z)P (X = x|Z = z)∑c

z′=1 P (Z = z′)P (X = x|Z = z′)
(5)
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Non-identifiability

Different parameter settings, same distribution

Suppose X = {a, b} and c = 2
and let P (Z = 1) = P (Z = 2) = 0.5

Z X = a X = b

1 0.2 0.8

2 0.7 0.3

P (X) 0.45 0.55

Z X = a X = b

1 0.7 0.3

2 0.2 0.8

P (X) 0.45 0.55

Problem for parameter estimation by hillclimbing
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Maximum likelihood estimation

Suppose a dataset D = {x(1), x(2), · · · , x(m)}

Suppose P (X) is one of a parametric family with parameters θ
Likelihood of iid observations

P (D) =

m∏
i=1

Pθ(X = x(i))

the score function is

l(θ) =
m∑
i=1

logPθ(X = x(i))

then we choose
θ? = arg max

θ
l(θ)
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MLE for categorical: estimation from fully observed data

Suppose we have complete data

I Dcomplete = {(x(1), z(1)), . . . , (x(m), z(m))}

Then, for a categorical distribution

P (X = x|Z = z) = θz,x

and n(z, x|Dcomplete) = count of (z, x) in Dcomplete

MLE solution:

θz,x =
n(z, x|Dcomplete)∑
x′ n(z, x′|Dcomplete)
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MLE for categorical: estimation from incomplete data

Expectation-Maximisation algorithm [Dempster et al., 1977]

E-step:

I for every observation x, imagine that every possible latent
assignment z happened with probability Pθ(Z = z|X = x)

Dcompleted = {(x, Z = 1), . . . , (x, Z = c) : x ∈ D}
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MLE for categorical: estimation from incomplete data
Expectation-Maximisation algorithm [Dempster et al., 1977]

M-step:

I reestimate θ as to climb the likelihood surface

I for categorical distributions P (X = x|Z = z) = θz,x
z and x are categorical
0 ≤ θz,x ≤ 1 and

∑
x∈X θz,x = 1

θz,x =
E[n(z → x|Dcompleted)]∑
x′ E[n(z → x′|Dcompleted)]

(6)

=

∑m
i=1

∑
z′ P (z′|x(i))1z(z′)1x(x(i))∑m

i=1

∑
x′
∑

z′ P (z′|x(i))1z(z′)1x′(x(i))
(7)

=

∑m
i=1 P (z|x(i))1x(x(i))∑m

i=1

∑
x′ P (z|x(i))1x′(x(i))

(8)
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IBM1: a constrained mixture model

f

a

n

em0

m

n

S

Constrained mixture model

I mixture components are English words

I but only English words that appear in
the English sentence can be assigned

I aj acts as an indicator for the mixture
component that generates French
word fj

I e0 is occupied by a special Null
component
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Parameterisation

Alignment distribution: uniform

P (A|M = m,N = n) =
1

m+ 1
(9)

Lexical distribution: categorical

P (F |E = e) = Cat(F |θe) (10)

I where θe ∈ RvF
I 0 ≤ θe,f ≤ 1

I
∑

f θe,f = 1
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IBM1: incomplete-data likelihood

f

a

n

em0

m

n

S

Incomplete-data likelihood

P (fn1 |em0 ) =

m∑
a1=0

· · ·
m∑

an=0

P (fn1 , a
n
1 |eaj ) (11)

=

m∑
a1=0

· · ·
m∑

an=0

n∏
j=1

P (aj |m,n)P (fj |eaj ) (12)

=
n∏
j=1

m∑
aj=0

P (aj |m,n)P (fj |eaj ) (13)
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IBM1: posterior

Posterior

P (an1 |fn1 , em0 ) =
P (fn1 , a

n
1 |em0 )

P (fn1 |em0 )
(14)

Factorised

P (aj |fn1 , em0 ) =
P (aj |m,n)P (fj |eaj )∑m
i=0 P (i|m,n)P (fj |ei)

(15)
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MLE via EM

E-step:

E[n(e→ f|An
1 )] =

m∑
a1=0

· · ·
m∑

an=0

P (an1 |fn1 , em0 )n(e→ f|An
1 ) (16)

=

m∑
a1=0

· · ·
m∑

An=0

n∏
j=1

P (aj |fn1 , em0 )1e(eaj
)1f(fj) (17)

=

n∏
j=1

m∑
i=0

P (Aj = i|fn1 , em0 )1e(ei)1f(fj) (18)

M-step:

θe,f =
E[n(e→ f |An1 )]∑
f ′ E[n(e→ f ′|An1 )]

(19)

22 / 29



EM algorithm

Repeat until convergence to a local optimum

1. For each sentence pair

1.1 compute posterior per alignment link
1.2 accumulate fractional counts

2. Normalise counts for each English word
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Alignment distribution

Positional distribution
P (Aj |M = m,N = n) = Cat(A|λj,m,n)

I one distribution for each tuple (j,m, n)

I support must include length of longest English sentence

I extremely over-parameterised!

Jump distribution [Vogel et al., 1996]

I define a jump function δ(aj , j,m, n) = aj −
⌊
jmn
⌋

I P (Aj |m,n) = Cat(∆|λ)

I ∆ takes values from −longest to +longest
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Note on terminology: source/target vs French/English

From an alignment model perspective all that matters is

I we condition on one language and generate the other

I in IBM models terminology, we condition on English and
generate French

From a noisy channel perspective, where we want to translate a
source sentence fn1 into some target sentence em1
I Bayes rule decomposes p(em1 |fn1 ) ∝ p(fn1 |em1 )p(em1 )

I train p(em1 ) and p(fn1 |em1 ) independently

I language model: p(em1 )

I alignment model: p(fn1 |em1 )

I note that the alignment model conditions on the target
sentence (English) and generates the source sentence (French)
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Limitations of IBM1-2

I too strong independence assumptions

I categorical parameterisation suffers from data sparsity

I EM suffers from local optima

28 / 29



Extensions

Fertility, distortion, and concepts [Brown et al., 1993]

Dirichlet priors and posterior inference [Mermer and Saraclar, 2011]

I + no Null words [Schulz et al., 2016]

I + HMM and efficient sampler [Schulz and Aziz, 2016]

Log-linear distortion parameters and variational Bayes
[Dyer et al., 2013]

First-order dependency (HMM) [Vogel et al., 1996]

I E-step requires dynamic programming
[Baum and Petrie, 1966]
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