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Translation data

Let’s assume we are confronted with a new language
and luckily we managed to obtain some sentence-aligned data

the black dog � ~
the nice dog � ∪
the black cat � ~

a dog chasing a cat � / �

Is there anything we could say about this language?
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Translation by analogy

the black dog � ~
the nice dog � ∪
the black cat � ~

a dog chasing a cat � / �

A few hypotheses:

I � ⇐⇒ dog

I � ⇐⇒ cat

I ~ ⇐⇒ black

I nouns seem to preceed adjectives

I determines are probably not expressed

I chasing may be expressed by /
and perhaps this language is OVS

I or perhaps chasing is realised by a verb with swapped
arguments
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Probabilistic lexical alignment models

This lecture is about operationalising this intuition

I through a probabilistic learning algorithm

I for a non-probabilistic approach see for example
[Lardilleux and Lepage, 2009]

3 / 31



Content

Lexical alignment

Mixture models

IBM model 1

IBM model 2

Decoding

Remarks

4 / 31



Word-to-word alignments

Imagine you are given a text

the black dog el perro negro
the nice dog el perro bonito
the black cat el gato negro

a dog chasing a cat un perro presiguiendo a un gato
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Word-to-word alignments

Now imagine the French words were replaced by placeholders

the black dog F1 F2 F3

the nice dog F1 F2 F3

the black cat F1 F2 F3

a dog chasing a cat F1 F2 F3 F4 F5
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the black dog F1 F2 F3

the nice dog F1 F2 F3

the black cat F1 F2 F3

a dog chasing a cat F1 F2 F3 F4 F5
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Generative story

For each sentence pair independently,

1. observe an English sentence e1, · · · , em
and a French sentence length n

2. for each French word position j from 1 to n

2.1 select an English position aj
2.2 conditioned on the English word eaj

, generate fj

We have introduced an alignment
which is not directly visible in the data
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Data augmentation

Observations:

the black dog el perro negro

Imagine data is made of pairs: (aj , fj) and eaj → fj
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Mixture models: generative story

xy

n

I c mixture components

I each defines a distribution over the same data space X
I plus a distribution over components themselves

Generative story

1. select a mixture component y ∼ p(y)

2. generate an observation from it x ∼ p(x|y)
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Mixture models: likelihood

xy

m

Incomplete-data likelihood

p(xm1 ) =

m∏
i=1

p(xi) (1)

=

m∏
i=1

c∑
y=1

p(xi, y)︸ ︷︷ ︸
complete-data likelihood

(2)

=
m∏
i=1

c∑
y=1

p(y)p(xi|y) (3)
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Interpretation

Missing data

I Let y take one of c mixture components

I Assume data consists of pairs (x, y)

I x is always observed

I y is always missing

Inference: posterior distribution over possible y for each x

p(y|x) =
p(y, x)∑c

y′=1 p(y
′, x)

(4)

=
p(y)p(x|y)∑c

y′=1 p(y
′)p(x|y′)

(5)
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Non-identifiability

Different parameter settings, same distribution

Suppose X = {a, b} and c = 2
and let p(y = 1) = p(y = 2) = 0.5

y x = a x = b

1 0.2 0.8

2 0.7 0.3

p(x) 0.45 0.55

y x = a x = b

1 0.7 0.3

2 0.2 0.8

p(x) 0.45 0.55

Problem for parameter estimation by hillclimbing
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Maximum likelihood estimation

Suppose a dataset D = {x(1), x(2), · · · , x(m)}

Suppose p(x) is one of a parametric family with parameters θ
Likelihood of iid observations

p(D) =

m∏
i=1

pθ(x
(i))

the score function is

l(θ) =
m∑
i=1

log pθ(x
(i))

then we choose
θ? = arg max

θ
l(θ)
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MLE for categorical: estimation from fully observed data

Suppose we have complete data

I Dcomplete = {(x(1), y(1)), . . . , (x(m), y(m))}

Then, for a categorical distribution

p(x|y) = θy,x

and n(y, x|Dcomplete) = count of (y, x) in Dcomplete

MLE solution:

θy,x =
n(y, x|Dcomplete)∑
x′ n(y, x′|Dcomplete)
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MLE for categorical: estimation from incomplete data

Expectation-Maximisation algorithm [Dempster et al., 1977]

E-step:

I for every observation x, imagine that every possible latent
assignment y happened with probability pθ(y|x)

Dcompleted = {(x, y = 1), . . . , (x, y = c) : x ∈ D}
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MLE for categorical: estimation from incomplete data
Expectation-Maximisation algorithm [Dempster et al., 1977]

M-step:

I reestimate θ as to climb the likelihood surface

I for categorical distributions p(x|y) = θy,x
y and x are categorical
0 ≤ θy,x ≤ 1 and

∑
x∈X θy,x = 1

θy,x =
E[n(y → x|Dcompleted)]∑
x′ E[n(y → x′|Dcompleted)]

(6)

=

∑m
i=1

∑
y′ p(y

′|x(i))1y(y′)1x(x(i))∑m
i=1

∑
x′
∑

y′ p(y
′|x(i))1y(y′)1x′(x(i))

(7)

=

∑m
i=1 p(y|x(i))1x(x(i))∑m

i=1

∑
x′ p(y|x(i))1x′(x(i))

(8)
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IBM1: a constrained mixture model

f

a

m

el0

l

m

S

Constrained mixture model

I mixture components are English words

I but only English words that appear in
the English sentence can be assigned

I aj acts as an indicator for the mixture
component that generates French
word fj

I e0 is occupied by a special Null
component

I j ranges over French words and i over
English words
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Parameterisation

Alignment distribution: uniform

p(a|l,m) =
1

l + 1
(9)

Lexical distribution: categorical

p(f |e) = Cat(f |θe) (10)

I where θe ∈ RvF
I 0 ≤ θe,f ≤ 1

I
∑

f θe,f = 1
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IBM1: incomplete-data likelihood

f

a

m

el0

l

m

S

Incomplete-data likelihood

p(fm1 |el0) =

l∑
a1=0

· · ·
l∑

am=0

p(fm1 , a
m
1 |eaj ) (11)

=

l∑
a1=0

· · ·
l∑

am=0

n∏
j=1

p(aj |l,m)p(fj |eaj ) (12)

=

n∏
j=1

l∑
aj=0

p(aj |l,m)p(fj |eaj ) (13)
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IBM1: posterior

Posterior

p(am1 |fm1 , el0) =
p(fm1 , a

m
1 |el0)

p(fm1 |el0)
(14)

Factorised

p(aj |fm1 , el0) =
p(aj |l,m)p(fj |eaj )∑l
i=0 p(i|l,m)p(fj |ei)

(15)
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MLE via EM

E-step:

E[n(e→ f|am1 )] =

l∑
a1=0

· · ·
l∑

am=0

p(am1 |fm1 , el0)n(e→ f|Am
1 ) (16)

=

l∑
a1=0

· · ·
l∑

am=0

m∏
j=1

p(aj |fm1 , el0)1e(eaj )1f(fj) (17)

=

m∏
j=1

l∑
i=0

p(aj = i|fm1 , el0)1e(ei)1f(fj) (18)

M-step:

θe,f =
E[n(e→ f |am1 )]∑
f ′ E[n(e→ f ′|am1 )]

(19)
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EM algorithm

Repeat until convergence to a local optimum

1. For each sentence pair

1.1 compute posterior per alignment link
1.2 accumulate fractional counts

2. Normalise counts for each English word
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Alignment distribution

Positional distribution
p(aj |l,m) = Cat(a|λj,l,m)

I one distribution for each tuple (j, l,m)

I support must include length of longest English sentence

I extremely over-parameterised!

Jump distribution [Vogel et al., 1996]

I define a jump function δ(aj , j, l,m) = aj −
⌊
j l
m

⌋
I p(aj |l,m) = Cat(∆|λ)

I ∆ takes values from −longest to +longest
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Decoding

I Pick the alignment that has the highest posterior probability.

I Assumption conditional independence of alignment links
Maximising the probability of an alignment factorises over
individual alignment links.

I argmaxp(am1 | fm1 , el0)
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Note on terminology: source/target vs French/English

From an alignment model perspective all that matters is

I we condition on one language and generate the other

I in IBM models terminology, we condition on English and
generate French

From a noisy channel perspective, where we want to translate a
source sentence fn1 into some target sentence el1
I Bayes rule decomposes p(el1|fn1 ) ∝ p(fn1 |el1)p(el1)
I train p(el1) and p(fn1 |el1) independently

I language model: p(el1)

I alignment model: p(fn1 |el1)
I note that the alignment model conditions on the target

sentence (English) and generates the source sentence (French)
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Limitations of IBM1-2

I too strong independence assumptions

I categorical parameterisation suffers from data sparsity

I EM suffers from local optima
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Extensions

Fertility, distortion, and concepts [Brown et al., 1993]

Dirichlet priors and posterior inference [Mermer and Saraclar, 2011]

I + no Null words [Schulz et al., 2016]

I + HMM and efficient sampler [Schulz and Aziz, 2016]

Log-linear distortion parameters and variational Bayes
[Dyer et al., 2013]

First-order dependency (HMM) [Vogel et al., 1996]

I E-step requires dynamic programming
[Baum and Petrie, 1966]
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