Lexical alignment: IBM models 1 and 2 MLE via EM for categorical distributions

Miguel Rios

April 7, 2019

Translation data

Let's assume we are confronted with a new language and luckily we managed to obtain some sentence-aligned data

Translation data

Let's assume we are confronted with a new language and luckily we managed to obtain some sentence-aligned data

Is there anything we could say about this language?

the black dog the nice dog the black cat a dog chasing a cat $\square \otimes$

the black dog $\square \otimes$ the nice dog $\square \cup$ the black cat $\square \otimes$ a dog chasing a cat $\square \triangleleft \square$

A few hypotheses:

▶ □ ⇐⇒ dog

the black dog the nice dog the black cat $\odot \$ a dog chasing a cat $\odot \$

- ▶ □ ⇐⇒ dog
- ▶ □ ⇐⇒ cat

the black dog the nice dog the black cat $\odot \$ a dog chasing a cat $\odot \$

- ▶ □ ⇐⇒ dog
- ▶ □ ←⇒ cat
- ▶ ⊛ ⇔ black

the black dog the nice dog the black cat $\odot \$ a dog chasing a cat $\odot \$

- ▶ □ ⇐⇒ dog
- ▶ □ ⇐⇒ cat
- ▶ (*) ⇔ black
- nouns seem to preceed adjectives

the black dog the nice dog the black cat $\odot \$ a dog chasing a cat $\odot \$

- ▶ □ ⇐⇒ dog
- ▶ □ ⇐⇒ cat
- ▶ * ⇔ black
- nouns seem to preceed adjectives
- determines are probably not expressed

the black dog the nice dog the black cat $\odot \$ a dog chasing a cat $\odot \$

- ▶ □ ⇐⇒ dog
- ▶ □ ⇐⇒ cat
- ▶ ⊛ ⇔ black
- nouns seem to preceed adjectives
- determines are probably not expressed
- chasing may be expressed by
 and perhaps this language is OVS

the black dog the nice dog the black cat $\odot \$ a dog chasing a cat $\odot \$

- ▶ □ ⇐⇒ dog
- ▶ □ ⇐⇒ cat
- ▶ * ⇔ black
- nouns seem to preceed adjectives
- determines are probably not expressed
- ► chasing may be expressed by < and perhaps this language is OVS</p>
- or perhaps chasing is realised by a verb with swapped arguments

Probabilistic lexical alignment models

This lecture is about operationalising this intuition

- through a probabilistic learning algorithm
- ▶ for a non-probabilistic approach see for example [Lardilleux and Lepage, 2009]

Content

Lexical alignment

Mixture models

IBM model 1

IBM model 2

Decoding

Remarks

Imagine you are given a text

the black dog the nice dog the black cat

el perro negro el perro bonito el gato negro a dog chasing a cat | un perro presiguiendo a un gato

Now imagine the French words were replaced by placeholders

the black dog	F_1 F_2 F_3
the nice dog	$F_1 F_2 F_3$
the black cat	$F_1 F_2 F_3$
dog chasing a cat	F_1 F_2 F_3 F_4 F_5

Now imagine the French words were replaced by placeholders

$$\begin{array}{c|cccc} \text{the black dog} & F_1 \ F_2 \ F_3 \\ \text{the nice dog} & F_1 \ F_2 \ F_3 \\ \text{the black cat} & F_1 \ F_2 \ F_3 \\ \text{a dog chasing a cat} & F_1 \ F_2 \ F_3 \ F_4 \ F_5 \end{array}$$

and suppose our task is to have a model explain the original data

Now imagine the French words were replaced by placeholders

$$\begin{array}{c|cccc} \text{the black dog} & F_1 \ F_2 \ F_3 \\ \text{the nice dog} & F_1 \ F_2 \ F_3 \\ \text{the black cat} & F_1 \ F_2 \ F_3 \\ \text{a dog chasing a cat} & F_1 \ F_2 \ F_3 \ F_4 \ F_5 \end{array}$$

and suppose our task is to have a model explain the original data by generating each French word from exactly one English word

Generative story

For each sentence pair independently,

- 1. observe an English sentence e_1, \dots, e_m and a French sentence length n
- 2. for each French word position j from 1 to n
 - 2.1 select an English position a_j
 - 2.2 conditioned on the English word e_{a_j} , generate f_j

Generative story

For each sentence pair independently,

- 1. observe an English sentence e_1, \dots, e_m and a French sentence length n
- 2. for each French word position j from 1 to n
 - 2.1 select an English position a_j
 - 2.2 conditioned on the English word e_{a_j} , generate f_j

We have introduced an alignment which is not directly visible in the data

Observations:

the black dog | el perro negro

Imagine data is made of pairs: (a_j,f_j) and $e_{a_j} o f_j$

Observations:

the black dog | el perro negro

Imagine data is made of pairs: (a_j,f_j) and $e_{a_j} o f_j$

the black dog $| (A_1, E_{A_1} \to F_1) (A_2, E_{A_2} \to F_2) (A_3, E_{A_3} \to F_3)$

Observations:

the black dog | el perro negro

Imagine data is made of pairs: (a_j,f_j) and $e_{a_j} o f_j$

the black dog $| (1, E_{A_1} \to F_1) (A_2, E_{A_2} \to F_2) (A_3, E_{A_3} \to F_3)$

Observations:

the black dog | el perro negro

Imagine data is made of pairs: (a_j,f_j) and $e_{a_j} o f_j$

the black dog $\mid (1, \text{the} \rightarrow \text{el}) \ (A_2, E_{A_2} \rightarrow F_2) \ (A_3, E_{A_3} \rightarrow F_3)$

Observations:

the black dog | el perro negro

Imagine data is made of pairs: (a_j,f_j) and $e_{a_j} o f_j$

the black dog \mid $(1, {\rm the} \to {\rm el})$ $(3, E_{A_2} \to F_2)$ $(A_3, E_{A_3} \to F_3)$

Observations:

the black dog | el perro negro

Imagine data is made of pairs: (a_j,f_j) and $e_{a_j} o f_j$

the black dog \mid $(1, \text{the} \rightarrow \text{el})$ $(3, \text{dog} \rightarrow \text{perro})$ $(A_3, E_{A_3} \rightarrow F_3)$

Observations:

the black dog | el perro negro

Imagine data is made of pairs: (a_j,f_j) and $e_{a_j} o f_j$

the black dog $\mid (1, \mathsf{the} \to \mathsf{el}) \ (3, \mathsf{dog} \to \mathsf{perro}) \ (2, E_{A_3} \to F_3)$

Observations:

the black dog | el perro negro

Imagine data is made of pairs: (a_j,f_j) and $e_{a_j} o f_j$

the black dog \mid $(1, \mathsf{the} \to \mathsf{el})$ $(3, \mathsf{dog} \to \mathsf{perro})$ $(2, \mathsf{black} \to \mathsf{negro})$

Observations:

the black dog | el perro negro

Imagine data is made of pairs: (a_j,f_j) and $e_{a_j} o f_j$

the black dog $\mid (1, \mathsf{the} \to \mathsf{el}) \ (3, \mathsf{dog} \to \mathsf{perro}) \ (2, \mathsf{black} \to \mathsf{negro})$

the black dog $\mid (A_1,\mathsf{the} \to \mathsf{el}) \ (A_1,\mathsf{the} \to \mathsf{perro}) \ (A_1,\mathsf{the} \to \mathsf{negro})$

Observations:

the black dog | el perro negro

Imagine data is made of pairs: (a_j,f_j) and $e_{a_j} o f_j$

the black dog \mid $(1, \mathsf{the} \to \mathsf{el}) \ (3, \mathsf{dog} \to \mathsf{perro}) \ (2, \mathsf{black} \to \mathsf{negro})$

the black dog
$$\mid (A_1, {\sf the} \to {\sf el}) \; (A_1, {\sf the} \to {\sf perro}) \; (A_1, {\sf the} \to {\sf negro})$$
 the black dog $\mid (a_1, e_{a_1} \to f_1) \; (a_2, e_{a_2} \to f_2) \; (a_3, e_{a_3} \to f_3)$

Content

Lexical alignment

Mixture models

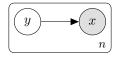
IBM model 1

IBM model 2

Decoding

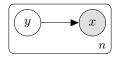
Remarks

Mixture models: generative story



- c mixture components
- lacktriangle each defines a distribution over the same data space ${\mathcal X}$
- plus a distribution over components themselves

Mixture models: generative story

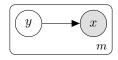


- c mixture components
- lacktriangle each defines a distribution over the same data space ${\mathcal X}$
- plus a distribution over components themselves

Generative story

- 1. select a mixture component $y \sim p(y)$
- 2. generate an observation from it $x \sim p(x|y)$

Mixture models: likelihood



Incomplete-data likelihood

$$p(x_1^m) = \prod_{i=1}^m p(x_i)$$
 (1)

$$= \prod_{i=1}^{m} \sum_{y=1}^{c} \underbrace{p(x_i, y)}_{\text{complete-data likelihood}} \tag{2}$$

$$= \prod_{i=1}^{m} \sum_{y=1}^{c} p(y) p(x_i|y)$$
 (3)

Interpretation

Missing data

- lacksquare Let y take one of c mixture components
- Assume data consists of pairs (x, y)
- x is always observed
- ightharpoonup y is always missing

Interpretation

Missing data

- Let y take one of c mixture components
- ▶ Assume data consists of pairs (x, y)
- x is always observed
- y is always missing

Inference: posterior distribution over possible y for each x

$$p(y|x) = \frac{p(y,x)}{\sum_{y'=1}^{c} p(y',x)}$$
 (4)

$$= \frac{p(y)p(x|y)}{\sum_{y'=1}^{c} p(y')p(x|y')}$$
 (5)

Non-identifiability

Different parameter settings, same distribution

Suppose
$$\mathcal{X} = \{a,b\}$$
 and $c=2$ and let $p(y=1) = p(y=2) = 0.5$

y	x = a	x = b
1	0.2	0.8
2	0.7	0.3
p(x)	0.45	0.55

y	x = a	x = b
1	0.7	0.3
2	0.2	0.8
p(x)	0.45	0.55

Non-identifiability

Different parameter settings, same distribution

Suppose
$$\mathcal{X}=\{a,b\}$$
 and $c=2$ and let $p(y=1)=p(y=2)=0.5$

y	x = a	x = b
1	0.2	0.8
2	0.7	0.3
p(x)	0.45	0.55

y	x = a	x = b
1	0.7	0.3
2	0.2	0.8
p(x)	0.45	0.55

Problem for parameter estimation by hillclimbing

Suppose a dataset $\mathcal{D} = \{x^{(1)}, x^{(2)}, \cdots, x^{(m)}\}$

Suppose a dataset $\mathcal{D}=\{x^{(1)},x^{(2)},\cdots,x^{(m)}\}$ Suppose p(x) is one of a parametric family with parameters θ

Suppose a dataset $\mathcal{D}=\{x^{(1)},x^{(2)},\cdots,x^{(m)}\}$ Suppose p(x) is one of a parametric family with parameters θ Likelihood of iid observations

$$p(\mathcal{D}) = \prod_{i=1}^{m} p_{\theta}(x^{(i)})$$

Suppose a dataset $\mathcal{D}=\{x^{(1)},x^{(2)},\cdots,x^{(m)}\}$ Suppose p(x) is one of a parametric family with parameters θ Likelihood of iid observations

$$p(\mathcal{D}) = \prod_{i=1}^{m} p_{\theta}(x^{(i)})$$

the score function is

$$l(\theta) = \sum_{i=1}^{m} \log p_{\theta}(x^{(i)})$$

Suppose a dataset $\mathcal{D}=\{x^{(1)},x^{(2)},\cdots,x^{(m)}\}$ Suppose p(x) is one of a parametric family with parameters θ Likelihood of iid observations

$$p(\mathcal{D}) = \prod_{i=1}^{m} p_{\theta}(x^{(i)})$$

the score function is

$$l(\theta) = \sum_{i=1}^{m} \log p_{\theta}(x^{(i)})$$

then we choose

$$\theta^* = \arg\max_{\theta} l(\theta)$$

MLE for categorical: estimation from fully observed data

Suppose we have complete data

 $ightharpoonup \mathcal{D}_{\mathsf{complete}} = \{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$

MLE for categorical: estimation from fully observed data

Suppose we have complete data

 $ightharpoonup \mathcal{D}_{\mathsf{complete}} = \{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$

Then, for a categorical distribution

$$p(x|y) = \theta_{y,x}$$

and $n(y, x | \mathcal{D}_{complete}) = count \ of \ (y, x) \ in \ \mathcal{D}_{complete}$

MLE solution:

$$\theta_{y,x} = \frac{n(y, x | \mathcal{D}_{\mathsf{complete}})}{\sum_{x'} n(y, x' | \mathcal{D}_{\mathsf{complete}})}$$

MLE for categorical: estimation from incomplete data

Expectation-Maximisation algorithm [Dempster et al., 1977]

E-step:

• for every observation x, imagine that every possible latent assignment y happened with probability $p_{\theta}(y|x)$

$$\mathcal{D}_{\mathsf{completed}} = \{(x, y = 1), \dots, (x, y = c) : x \in \mathcal{D}\}\$$

MLE for categorical: estimation from incomplete data

Expectation-Maximisation algorithm [Dempster et al., 1977]

M-step:

- ightharpoonup reestimate θ as to climb the likelihood surface
- for categorical distributions $p(x|y) = \theta_{y,x}$ y and x are categorical $0 \le \theta_{y,x} \le 1$ and $\sum_{x \in X} \theta_{y,x} = 1$

$$\theta_{y,x} = \frac{\mathbb{E}[n(y \to x | \mathcal{D}_{\mathsf{completed}})]}{\sum_{x'} \mathbb{E}[n(y \to x' | \mathcal{D}_{\mathsf{completed}})]}$$
(6)

$$= \frac{\sum_{i=1}^{m} \sum_{y'} p(y'|x^{(i)}) \mathbb{1}_{y}(y') \mathbb{1}_{x}(x^{(i)})}{\sum_{i=1}^{m} \sum_{x'} \sum_{y'} p(y'|x^{(i)}) \mathbb{1}_{y}(y') \mathbb{1}_{x'}(x^{(i)})}$$
(7)

$$= \frac{\sum_{i=1}^{m} p(y|x^{(i)}) \mathbb{1}_{x}(x^{(i)})}{\sum_{i=1}^{m} \sum_{x'} p(y|x^{(i)}) \mathbb{1}_{x'}(x^{(i)})}$$
(8)

Content

Lexical alignment

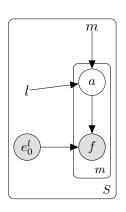
Mixture models

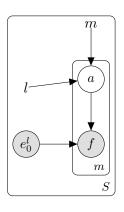
IBM model 1

IBM model 2

Decoding

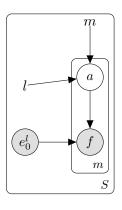
Remarks





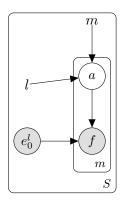
Constrained mixture model

mixture components are English words



Constrained mixture model

- mixture components are English words
- but only English words that appear in the English sentence can be assigned



Constrained mixture model

- mixture components are English words
- but only English words that appear in the English sentence can be assigned
- a_j acts as an indicator for the mixture component that generates French word f_j
- e₀ is occupied by a special NULL component
- j ranges over French words and i over English words

Parameterisation

Alignment distribution: uniform

$$p(a|l,m) = \frac{1}{l+1} \tag{9}$$

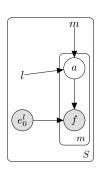
Lexical distribution: categorical

$$p(f|e) = \operatorname{Cat}(f|\theta_e) \tag{10}$$

- where $\theta_e \in \mathbb{R}^{v_F}$
- \bullet $0 \le \theta_{e,f} \le 1$
- $\blacktriangleright \sum_{f} \theta_{e,f} = 1$

IBM1: incomplete-data likelihood

Incomplete-data likelihood



$$p(f_1^m|e_0^l) = \sum_{a_1=0}^l \cdots \sum_{a_m=0}^l p(f_1^m, a_1^m|e_{a_j})$$

$$-\sum_{a_1=0}^l \cdots \sum_{a_m=0}^l \prod_{m=0}^n p(a_m|l_m) p(f_m|e_{a_m})$$
(11)

$$= \sum_{a_1=0}^{l} \cdots \sum_{a_m=0}^{l} \prod_{j=1}^{n} p(a_j|l,m) p(f_j|e_{a_j}) \quad (12)$$

$$= \prod_{j=1}^{n} \sum_{a_j=0}^{l} p(a_j|l, m) p(f_j|e_{a_j})$$
 (13)

IBM1: posterior

Posterior

$$p(a_1^m|f_1^m, e_0^l) = \frac{p(f_1^m, a_1^m|e_0^l)}{p(f_1^m|e_0^l)}$$
(14)

Factorised

$$p(a_j|f_1^m, e_0^l) = \frac{p(a_j|l, m)p(f_j|e_{a_j})}{\sum_{i=0}^l p(i|l, m)p(f_j|e_i)}$$
(15)

MLE via EM

E-step:

$$\mathbb{E}[n(\mathsf{e} \to \mathsf{f}|a_1^m)] = \sum_{a_1=0}^l \cdots \sum_{a_m=0}^l p(a_1^m|f_1^m, e_0^l) n(\mathsf{e} \to \mathsf{f}|A_1^m)$$

$$= \sum_{a_1=0}^l \cdots \sum_{a_m=0}^l \prod_{j=1}^m p(a_j|f_1^m, e_0^l) \mathbb{1}_{\mathsf{e}}(e_{a_j}) \mathbb{1}_{\mathsf{f}}(f_j)$$
(17)

 $= \prod \sum p(a_j = i|f_1^m, e_0^l) \mathbb{1}_{\mathsf{e}}(e_i) \mathbb{1}_{\mathsf{f}}(f_j)$

M-step:

$$\theta_{e,f} = \frac{\mathbb{E}[n(e \to f | a_1^m)]}{\sum_{f'} \mathbb{E}[n(e \to f' | a_1^m)]} \tag{19}$$

(18)

EM algorithm

Repeat until convergence to a local optimum

- 1. For each sentence pair
 - 1.1 compute posterior per alignment link
 - 1.2 accumulate fractional counts
- 2. Normalise counts for each English word

Content

Lexical alignment

Mixture models

IBM model 1

IBM model 2

Decoding

Remarks

Alignment distribution

Positional distribution

$$p(a_j|l,m) = \operatorname{Cat}(a|\lambda_{j,l,m})$$

- lacktriangle one distribution for each tuple (j,l,m)
- support must include length of longest English sentence
- extremely over-parameterised!

Alignment distribution

Positional distribution

$$p(a_j|l,m) = \operatorname{Cat}(a|\lambda_{j,l,m})$$

- one distribution for each tuple (j, l, m)
- support must include length of longest English sentence
- extremely over-parameterised!

Jump distribution

[Vogel et al., 1996]

- define a jump function $\delta(a_j, j, l, m) = a_j \lfloor j \frac{l}{m} \rfloor$
- $p(a_j|l,m) = \operatorname{Cat}(\Delta|\lambda)$
- lackbox Δ takes values from -longest to +longest

Content

Lexical alignment

Mixture models

IBM model 1

IBM model 2

Decoding

Remarks

Decoding

- ▶ Pick the alignment that has the highest posterior probability.
- Assumption conditional independence of alignment links Maximising the probability of an alignment factorises over individual alignment links.
- $\qquad \qquad arg\, maxp(a_1^m \mid f_1^m, e_0^l) \\$

Content

Lexical alignment

Mixture models

IBM model 1

IBM model 2

Decoding

Remarks

Note on terminology: source/target vs French/English

From an alignment model perspective all that matters is

- we condition on one language and generate the other
- ▶ in IBM models terminology, we condition on *English* and generate *French*

From a noisy channel perspective, where we want to translate a source sentence f_1^n into some target sentence e_1^l

- \blacktriangleright Bayes rule decomposes $p(e_1^l|f_1^n) \propto p(f_1^n|e_1^l)p(e_1^l)$
- lacktriangle train $p(e_1^l)$ and $p(f_1^n|e_1^l)$ independently
- ▶ language model: $p(e_1^l)$
- ▶ alignment model: $p(f_1^n|e_1^l)$
- note that the alignment model conditions on the target sentence (English) and generates the source sentence (French)

Limitations of IBM1-2

- too strong independence assumptions
- categorical parameterisation suffers from data sparsity
- EM suffers from local optima

Extensions

Fertility, distortion, and concepts [Brown et al., 1993]

Dirichlet priors and posterior inference [Mermer and Saraclar, 2011]

- ► + no NULL words [Schulz et al., 2016]
- + HMM and efficient sampler [Schulz and Aziz, 2016]

Log-linear distortion parameters and variational Bayes [Dyer et al., 2013]

First-order dependency (HMM) [Vogel et al., 1996]

E-step requires dynamic programming [Baum and Petrie, 1966]

References I

- L. E. Baum and T. Petrie. Statistical inference for probabilistic functions of finite state Markov chains. *Annals of Mathematical Statistics*, 37:1554–1563, 1966.
- Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della Pietra, and Robert L. Mercer. The mathematics of statistical machine translation: parameter estimation. *Computational Linguistics*, 19 (2):263–311, June 1993. ISSN 0891-2017. URL http://dl.acm.org/citation.cfm?id=972470.972474.
- A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em algorithm. *Journal of the Royal Statistical Society*, 39(1):1–38, 1977.

References II

Chris Dyer, Victor Chahuneau, and Noah A. Smith. A simple, fast, and effective reparameterization of ibm model 2. In *Proceedings* of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 644–648, Atlanta, Georgia, June 2013. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/N13-1073.

Adrien Lardilleux and Yves Lepage. Sampling-based multilingual alignment. In *Proceedings of the International Conference RANLP-2009*, pages 214–218, Borovets, Bulgaria, September 2009. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/R09-1040.

References III

Coskun Mermer and Murat Saraclar. Bayesian word alignment for statistical machine translation. In *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies*, pages 182–187, Portland, Oregon, USA, June 2011. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/P11-2032.

Philip Schulz and Wilker Aziz. Fast collocation-based bayesian hmm word alignment. In *Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers*, pages 3146–3155, Osaka, Japan, December 2016. The COLING 2016 Organizing Committee. URL http://aclweb.org/anthology/C16-1296.

References IV

Philip Schulz, Wilker Aziz, and Khalil Sima'an. Word alignment without null words. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pages 169–174, Berlin, Germany, August 2016. Association for Computational Linguistics. URL http://anthology.aclweb.org/P16-2028.

Stephan Vogel, Hermann Ney, and Christoph Tillmann.
HMM-based word alignment in statistical translation. In
Proceedings of the 16th Conference on Computational
Linguistics - Volume 2, COLING '96, pages 836–841,
Stroudsburg, PA, USA, 1996. Association for Computational
Linguistics. doi: 10.3115/993268.993313. URL
http://dx.doi.org/10.3115/993268.993313.