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Introduction

Course details

• Github course page https://uva-slpl.github.io/nlp2/

• Syllabus

• Slides
• Reading material

• Projects
• Posts
• Grading

• Report in groups of 3
• Project 1 50%
• Project 2 50%

• Lab starts April 10th check out the Posts for more info.
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Natural Language Processing

What is NLP?

• Goal understanding of language
Not only string or keyword matching

• End systems

• Classification: Text categorization, sentiment classification
• Generation: Question answering, Machine Translation

• Computational methods to learn more about how language works
(Computational Linguistics)
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Natural Language Processing

Natural language inference

• Textual entailment is defined as a directional relation between pairs of
text expressions, the T Text, and the H Hypothesis.

• Systems decide for each entailment pair whether T entails H or not.

T: The purchase of Houston-based LexCorp by BMI for $2Bn prompted
widespread sell-offs by traders as they sought to minimize exposure.
H: BMI acquired an American company.
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Natural Language Processing

Natural language inference

0[Chen et al., 2016]
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Natural Language Processing

Machine translation

0[Bahdanau et al., 2015]
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Natural Language Processing

Machine translation
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Natural Language Processing

Question answering

0[Merity, 2015]
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Natural Language Processing

Question answering
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Natural Language Processing

Sentiment classification

0https:
//www.edgarsdatalab.com/2017/09/04/sentiment-analysis-using-tidytext/
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Natural Language Processing

Sentiment classification

0[Tai et al., 2015]
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Natural Language Processing

Graphical Models

x

y θ

m
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Natural Language Processing

Supervised learning

• We have data inputs X = 〈x1, . . . , xn〉, and the corresponding
outputs Y = 〈y1, . . . , yn〉
generated by some unknown procedure

• which we assume can be captured by a probabilistic model
with known probability (mass/density) function e.g.

p(y|x, θ) = Cat(y|f(x; θ)), (1)

• y outputs computed by mapping from the input to the class
probabilities with a neural network f parameterised by θ

• Goal estimate parameters that assign maximum likelihood to
observations
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Natural Language Processing

Supervised learning

x y
Parsing Sentence Syntactic tree

Machine translation Source Target translation
NLI Text and Hypohtesis Entailment relation
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Natural Language Processing

Supervised learning

0[Neubig, 2018]
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Supervised learning

0[Neubig, 2018]
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Natural Language Processing

Supervised learning

• Maximum likelihood estimation tells you which loss to optimise (i.e.
negative log-likelihood)

• Automatic differentiation (backprop) chain rule of derivatives:
give a tractable forward pass and get gradients

• Stochastic optimisation powered by backprop general purpose
gradient-based optimisers
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Natural Language Processing

Maximum likelihood estimation

• Let p(y | θ) be the probability of an observation y and θ refer to all of
its parameters
Given a dataset y(1), ..., y(N) of i.i.d. observations,
the log-likelihood function gives us a criterion for parameter
estimation

L(θ | y(1:N)) = log
N∏
s=1

p(y(N) | θ) =
N∑
s=1

logp(y(N) | θ) (2)
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Natural Language Processing

MLE via gradient-based optimisation

• If the log-likelihood is differentiable and tractable then backprop gives
us the gradient

∇θL(θ | y(1:N)) = ∇θ

N∑
s=1

logp(y(N) | θ)

=
N∑
s=1

∇θlogp(y(N) | θ)
(3)

• and we can update θ in the direction

γ∇θL(θ | y(1:N)) (4)

to achieve a local maximum of the likelihood function
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Natural Language Processing

Latent variable approach

• Because NN models work but they may struggle with:

• lack of training data
• partial supervision
• lack of inductive bias
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Natural Language Processing

Latent variable approach

0[Neubig, 2018]
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Latent variable approach
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Course Topics

What is this course?
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Course Topics

Goals

• Go through current literature

• Define probabilistic models
• Start combining probabilistic models and NN architectures
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Course Topics

Next class

• Probabilistic Graphical Models

• Introduction to Word Alignment
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Course Topics

Next class

• Probabilistic Graphical Models
• Introduction to Word Alignment
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Questions?
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