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Alignment distribution

Position parameterisation L2 ×M2 Jump distribution [Vogel et al.,
1996]

I define a jump function δ(aj , j, l,m) = aj −
⌊
j l
m

⌋

I p(aj |l,m) = Cat(∆|δ)
I ∆ takes values from −longest to +longest

where ∆ = 〈δ−L, ..., δL〉 is a vector of parameters called jump
probabilities

I The categorical distribution is defined for jumps ranging from
−L to L
The jump function defines the support of the alignment
distribution

I A jump quantifies a notion of mismatch in linear order
between French and English
Leads to a very small number of parameters, 2× L
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EM non identifiability

IBM 1

I The mixture weights are fixed and uniform,
EM is guaranteed to arrive at a global maximum.

I But there may be local maxima

I It is not strictly convex, where multiple parameter settings
that achieve the same global optima

I The possible MLEs the EM algorithm finds depends on the
starting parameters

I In practice, one usually starts from uniform parameters.
[Toutanova and Galley, 2011] show better initialisations
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EM non identifiability

IBM 2

I Mixture weights are not fixed and we add several new
parameters
Given asymmetric mixture weights, most maxima are now
local.

I Mixture weights are not uniform
No guaranteed to be a global maximum.

I Changing weights may change in the component distributions
and the other way around.

I In practice, one initialises the component distributions of
IBM2 (i.e. its translation parameters) with IBM1 estimates.

I The alignment distributions are initialised uniformly. Notice
we first have to train IBM1 before proceeding to IBM2
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IBM 1-2: strong assumptions

Independence assumptions

I p(a|m,n) does not depend on lexical choices
a1 cute2 house3 ↔ una1 casa3 bella2

a1 cosy2 house3 ↔ una1 casa3 confortable2
I p(f |e) can only reasonably explain one-to-one alignments

I will be leaving soon ↔ voy a salir pronto

Parameterisation

I categorical events are unrelated
prefixes/suffixes: normal, normally, abnormally, . . .
verb inflections: comer, comi, comia, comio, . . .
gender/number: gato, gatos, gata, gatas, . . .
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Conditional probability distributions

CPD: condition c ∈ C, outcome o ∈ O, and θc ∈ R|O|

p(o|c) = Cat(θc) (1)

I p(o|c) = θc,o

I 0 ≤ θc,o ≤ 1

I
∑

o θc,o = 1

I O(|c| × |o|) parameters

How bad is it for IBM model 1?
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Probability tables

p(f |e)

English ↓ French →
anormal normal normalmente . . .

abnormal 0.7 0.1 0.01 . . .

normal 0.01 0.6 0.2 . . .

normally 0.001 0.25 0.65 . . .

I grows with size of vocabularies

I no parameter sharing
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Logistic CPDs

CPD: condition c ∈ C and outcome o ∈ O

p(o|c) =
exp(w>h(c, o))∑
o′ exp(w>h(c, o′))

(2)

I w ∈ Rd is a weight vector

I h : C × O → Rd is a feature function

I d parameters

I computing CPD requires O(|c| × |o| × d) operations

How bad is it for IBM model 1?
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CPDs as functions

h : E × F → Rd

Events ↓ Features →

English French
normal normal- -normal ab- -ly
normal normal- -normal a- -mente

abnormal
anormal 0 0 1 1 0
normal 0 0 1 0 0
normalmente 0 1 0 0 0

normal
anormal 0 0 1 0 0
normal 1 0 0 0 0
normalmente 0 1 0 0 0

normally
anormal 0 0 1 0 0
normal 0 1 0 0 0
normalmente 0 1 0 0 1

Weights → 1.5 0.3 0.3 0.8 1.1

I computation still grows with size of vocabularies
I but far less parameters to estimate
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Log-linear models

I Log-linear models revolve around the concept of features. In
short, features are basically,
Something about the context that will be useful in predicting

I Enhancing models with features that capture the dependencies
between different morphologically inflected word forms. The
standard parameterisation using categorical distributions is
limited with respect to the features it can capture
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Berg-Kirkpatrick et al. [2010]

Lexical distribution in IBM model 1

p(f |e) =
exp(w>lexhlex(e, f))∑
f ′ exp(w>lexhlex(e, f ′))

(3)

Features

I f ∈ VF is a French word (decision), e ∈ VE is an English word
(conditioning context), w ∈ Rd is the parameter vector, and
h : VFVE → Rd is a feature vector function.

I prefixes/suffixes

I character n-grams

I POS tags
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Extension: lexicalised jump distribution

p(δ|e) =
exp(w>disthdist(e, δ))∑
δ′ exp(w>disthdist(e, δ′))

(4)

Features

I POS tags

I suffixes/prefixes

I lemma

I jump values

I m,n, j, i (values used to compute jump)
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Problems with features

I We can see et−2 = farmers is compatible with et = hay (in
the context farmers grow hay)

I and et−1 = eat is also compatible (in the context cows eat
hay).
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Problems with features

I Features depend on et−1, and another set of features
dependent on et−2, neither set of features can rule out the
unnatural phrase farmers eat hay

I Combination of features greatly expands the parameters:
instead of O(|V |2) parameters for each pair ei−1, ei,
We need O(|V |3) parameters for each triplet ei−2, ei−1, ei

I Learning using these combination features, e.g. neural
networks
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Function that cannot be solved by a linear transformation

I For example the function x ∈ −1, 1 and outputs y = 1
if both x1 and x2 are equal and y = −1 otherwise.

I We can use a linear combination y = Wx+ b

I Or a multi-layer perceptron:

h = step(Wxhx + bh)

y = whyh+ by.
(5)
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Function that cannot be solved by a linear transformation
I Computation is split into two stages:

I Calculation of the hidden layer , which takes in input x and
outputs a vector of hidden variables h

I and calculation of the output layer, which takes in h and
calculates the final result y.

I Both layers consist of an affine transform using weights W
and biases b, followed by a step() function, which calculates
the following:

step(x) =

{
1, if x > 0.

−1, otherwise.
(6)

I
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Training Neural Networks

I We would like to train the parameters of the MLP

I We need to define the loss function l(), calculate the
derivative of the loss with respect to the parameters, then
take a step in the direction that will reduce the loss.

I e.g. squared-error loss, common in regression problems
which measures the difference between the calculated value y
and correct value y∗:
l(y∗, y) = (y∗ − y)2

I however the step() function is not very derivative friendly

I We can use non-linear functions, hyperbolic tangent (tanh)
function
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Training Neural Networks
I We perform the full calculation of the loss function:

I Computation graph:

I We use chain rule of derivatives for each set of parameters:

I
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IBM: non-linear models

Nothing prevents us from using more expressive functions
[Kočiský et al., 2014]

I p(o|c) = softmax(fθ(c))

I p(o|c) = exp(fθ(c,o)))∑
o′ exp(fθ(c,o

′)))

where fθ(·) is a neural network with parameters θ
Features

I induce features (word-level, char-level, n-gram level)

I pre-trained embeddings
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[Kočiský et al., 2014]

I p(o|c) = softmax(fθ(c))

I p(o|c) = exp(fθ(c,o)))∑
o′ exp(fθ(c,o

′)))

where fθ(·) is a neural network with parameters θ
Features

I induce features (word-level, char-level, n-gram level)

I pre-trained embeddings

25 / 31



IBM: non-linear models

Nothing prevents us from using more expressive functions
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Neural IBM

I fθ(e) = softmax(WtHE(e) + bt) note that the softmax is
necessary to make tθ produce valid parameters for the
categorical distribution
Wt ∈ R|VF |×dh and bt ∈ R|VF |
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Neural IBM

I hE(e) is defined below with WhE ∈ Rdh×de and bhE ∈ Rdh
hE(e) = tanh(WhErE(e) + bhE︸ ︷︷ ︸

affine

)

︸ ︷︷ ︸
elementwise nonlinearity

I rE(e) = WrEvE(e) is a word embedding of e with
WrE ∈ Rde×|VE |

I vE(e) ∈ {0, 1}vE is a one-hot encoding of e, thus∑
i vE(e)i = 1

I θ = {Wt, bt,WhE , bhE ,WrE}
I Other architectures are also possible, one can use different

parameterisations that may use more or less parameters. For
example, with a CNN one could make this function sensitive
to characters in the words, something along these lines could
also be done with RNNs.

where
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MLE

I We can use maximum likelihood estimation (MLE) to choose
the parameters of our deterministic function fθ.

I We know at least one general (convex) optimisation
algorithm, i.e. gradient ascent.
This is a gradient-based procedure which chooses θ so that
the gradient of our objective with respect to θ is zero.

I IBM1 would be convex with standard tabular CPDs, but
FFNNs with 1 non-linear hidden layer (or more) make it
non-convex.

I Nowadays, we have tools that can perform automatic
differentiation for us.
If our functions are differentiable, we can get gradients for
them.
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MLE

I We still need to be able to express the functional form of the
likelihood.

I Let us then express the log-likelihood (which is the objective
we maximise in MLE) of a single sentence pair as a function
of our free parameters:

L(θ|em0 , fn1 ) = log pθ(f
m
1 |el0) (7)

I Note that in fact our log-likelihood is a sum of independent
terms Lj(θ|em0 , fj), thus we can characterise the contribution
of each French word in each sentence pair as
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MLE

I NN toolkits implement gradient-based optimisation for us.

I To get a loss, we simply negate our objective.
You will find a lot of material that mentions some categorical
cross-entropy loss.

l(θ) = −
∑

(em0 ,f
l
1)

p?(f
l
1|em0 ) log pθ(f

m
1 |el0)

≈ − 1

S
log pθ(f

l
1|em0 )

(8)
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MLE

I With SGD we sample a subset S of the training data and
compute a loss for that sample.

I We then use automatic differentiation to obtain a gradient
∇θl(θ|S). This gradient is used to update our deterministic
parameters θ.

θ(t+1) = θ(t) − δt∇θ(t) l(θ
(t)|S) (9)
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