
Lexical alignment: feature-rich models

Miguel Rios

April 14, 2019

Content

Remarks IBM models

Representation

Feature rich models

Feature-rich IBM 1-2

Overview of Neural Networks

Neural IBM 1

1 / 31

Alignment distribution

Position parameterisation L2 ×M2 Jump distribution [Vogel et al.,
1996]

I define a jump function δ(aj , j, l,m) = aj −
⌊
j l
m

⌋

I p(aj |l,m) = Cat(∆|δ)
I ∆ takes values from −longest to +longest

where ∆ = 〈δ−L, ..., δL〉 is a vector of parameters called jump
probabilities

I The categorical distribution is defined for jumps ranging from
−L to L
The jump function defines the support of the alignment
distribution

I A jump quantifies a notion of mismatch in linear order
between French and English
Leads to a very small number of parameters, 2× L

2 / 31

Alignment distribution

Position parameterisation L2 ×M2 Jump distribution [Vogel et al.,
1996]

I define a jump function δ(aj , j, l,m) = aj −
⌊
j l
m

⌋
I p(aj |l,m) = Cat(∆|δ)

I ∆ takes values from −longest to +longest
where ∆ = 〈δ−L, ..., δL〉 is a vector of parameters called jump
probabilities

I The categorical distribution is defined for jumps ranging from
−L to L
The jump function defines the support of the alignment
distribution

I A jump quantifies a notion of mismatch in linear order
between French and English
Leads to a very small number of parameters, 2× L

2 / 31

Alignment distribution

Position parameterisation L2 ×M2 Jump distribution [Vogel et al.,
1996]

I define a jump function δ(aj , j, l,m) = aj −
⌊
j l
m

⌋
I p(aj |l,m) = Cat(∆|δ)
I ∆ takes values from −longest to +longest

where ∆ = 〈δ−L, ..., δL〉 is a vector of parameters called jump
probabilities

I The categorical distribution is defined for jumps ranging from
−L to L
The jump function defines the support of the alignment
distribution

I A jump quantifies a notion of mismatch in linear order
between French and English
Leads to a very small number of parameters, 2× L

2 / 31

Alignment distribution

Position parameterisation L2 ×M2 Jump distribution [Vogel et al.,
1996]

I define a jump function δ(aj , j, l,m) = aj −
⌊
j l
m

⌋
I p(aj |l,m) = Cat(∆|δ)
I ∆ takes values from −longest to +longest

where ∆ = 〈δ−L, ..., δL〉 is a vector of parameters called jump
probabilities

I The categorical distribution is defined for jumps ranging from
−L to L
The jump function defines the support of the alignment
distribution

I A jump quantifies a notion of mismatch in linear order
between French and English
Leads to a very small number of parameters, 2× L

2 / 31

Alignment distribution

Position parameterisation L2 ×M2 Jump distribution [Vogel et al.,
1996]

I define a jump function δ(aj , j, l,m) = aj −
⌊
j l
m

⌋
I p(aj |l,m) = Cat(∆|δ)
I ∆ takes values from −longest to +longest

where ∆ = 〈δ−L, ..., δL〉 is a vector of parameters called jump
probabilities

I The categorical distribution is defined for jumps ranging from
−L to L
The jump function defines the support of the alignment
distribution

I A jump quantifies a notion of mismatch in linear order
between French and English
Leads to a very small number of parameters, 2× L

2 / 31

IBM 2 EM

3 / 31

EM non identifiability

IBM 1

I The mixture weights are fixed and uniform,
EM is guaranteed to arrive at a global maximum.

I But there may be local maxima

I It is not strictly convex, where multiple parameter settings
that achieve the same global optima

I The possible MLEs the EM algorithm finds depends on the
starting parameters

I In practice, one usually starts from uniform parameters.
[Toutanova and Galley, 2011] show better initialisations

4 / 31

EM non identifiability

IBM 1

I The mixture weights are fixed and uniform,
EM is guaranteed to arrive at a global maximum.

I But there may be local maxima

I It is not strictly convex, where multiple parameter settings
that achieve the same global optima

I The possible MLEs the EM algorithm finds depends on the
starting parameters

I In practice, one usually starts from uniform parameters.
[Toutanova and Galley, 2011] show better initialisations

4 / 31

EM non identifiability

IBM 1

I The mixture weights are fixed and uniform,
EM is guaranteed to arrive at a global maximum.

I But there may be local maxima

I It is not strictly convex, where multiple parameter settings
that achieve the same global optima

I The possible MLEs the EM algorithm finds depends on the
starting parameters

I In practice, one usually starts from uniform parameters.
[Toutanova and Galley, 2011] show better initialisations

4 / 31

EM non identifiability

IBM 1

I The mixture weights are fixed and uniform,
EM is guaranteed to arrive at a global maximum.

I But there may be local maxima

I It is not strictly convex, where multiple parameter settings
that achieve the same global optima

I The possible MLEs the EM algorithm finds depends on the
starting parameters

I In practice, one usually starts from uniform parameters.
[Toutanova and Galley, 2011] show better initialisations

4 / 31

EM non identifiability

IBM 1

I The mixture weights are fixed and uniform,
EM is guaranteed to arrive at a global maximum.

I But there may be local maxima

I It is not strictly convex, where multiple parameter settings
that achieve the same global optima

I The possible MLEs the EM algorithm finds depends on the
starting parameters

I In practice, one usually starts from uniform parameters.
[Toutanova and Galley, 2011] show better initialisations

4 / 31

EM non identifiability

IBM 2

I Mixture weights are not fixed and we add several new
parameters
Given asymmetric mixture weights, most maxima are now
local.

I Mixture weights are not uniform
No guaranteed to be a global maximum.

I Changing weights may change in the component distributions
and the other way around.

I In practice, one initialises the component distributions of
IBM2 (i.e. its translation parameters) with IBM1 estimates.

I The alignment distributions are initialised uniformly. Notice
we first have to train IBM1 before proceeding to IBM2

5 / 31

EM non identifiability

IBM 2

I Mixture weights are not fixed and we add several new
parameters
Given asymmetric mixture weights, most maxima are now
local.

I Mixture weights are not uniform
No guaranteed to be a global maximum.

I Changing weights may change in the component distributions
and the other way around.

I In practice, one initialises the component distributions of
IBM2 (i.e. its translation parameters) with IBM1 estimates.

I The alignment distributions are initialised uniformly. Notice
we first have to train IBM1 before proceeding to IBM2

5 / 31

EM non identifiability

IBM 2

I Mixture weights are not fixed and we add several new
parameters
Given asymmetric mixture weights, most maxima are now
local.

I Mixture weights are not uniform
No guaranteed to be a global maximum.

I Changing weights may change in the component distributions
and the other way around.

I In practice, one initialises the component distributions of
IBM2 (i.e. its translation parameters) with IBM1 estimates.

I The alignment distributions are initialised uniformly. Notice
we first have to train IBM1 before proceeding to IBM2

5 / 31

EM non identifiability

IBM 2

I Mixture weights are not fixed and we add several new
parameters
Given asymmetric mixture weights, most maxima are now
local.

I Mixture weights are not uniform
No guaranteed to be a global maximum.

I Changing weights may change in the component distributions
and the other way around.

I In practice, one initialises the component distributions of
IBM2 (i.e. its translation parameters) with IBM1 estimates.

I The alignment distributions are initialised uniformly. Notice
we first have to train IBM1 before proceeding to IBM2

5 / 31

EM non identifiability

IBM 2

I Mixture weights are not fixed and we add several new
parameters
Given asymmetric mixture weights, most maxima are now
local.

I Mixture weights are not uniform
No guaranteed to be a global maximum.

I Changing weights may change in the component distributions
and the other way around.

I In practice, one initialises the component distributions of
IBM2 (i.e. its translation parameters) with IBM1 estimates.

I The alignment distributions are initialised uniformly. Notice
we first have to train IBM1 before proceeding to IBM2

5 / 31

Content

Remarks IBM models

Representation

Feature rich models

Feature-rich IBM 1-2

Overview of Neural Networks

Neural IBM 1

6 / 31

IBM 1-2: strong assumptions

Independence assumptions

I p(a|m,n) does not depend on lexical choices
a1 cute2 house3 ↔ una1 casa3 bella2

a1 cosy2 house3 ↔ una1 casa3 confortable2
I p(f |e) can only reasonably explain one-to-one alignments

I will be leaving soon ↔ voy a salir pronto

Parameterisation

I categorical events are unrelated
prefixes/suffixes: normal, normally, abnormally, . . .
verb inflections: comer, comi, comia, comio, . . .
gender/number: gato, gatos, gata, gatas, . . .

7 / 31

IBM 1-2: strong assumptions

Independence assumptions

I p(a|m,n) does not depend on lexical choices
a1 cute2 house3 ↔ una1 casa3 bella2
a1 cosy2 house3 ↔ una1 casa3 confortable2

I p(f |e) can only reasonably explain one-to-one alignments
I will be leaving soon ↔ voy a salir pronto

Parameterisation

I categorical events are unrelated
prefixes/suffixes: normal, normally, abnormally, . . .
verb inflections: comer, comi, comia, comio, . . .
gender/number: gato, gatos, gata, gatas, . . .

7 / 31

IBM 1-2: strong assumptions

Independence assumptions

I p(a|m,n) does not depend on lexical choices
a1 cute2 house3 ↔ una1 casa3 bella2
a1 cosy2 house3 ↔ una1 casa3 confortable2

I p(f |e) can only reasonably explain one-to-one alignments
I will be leaving soon ↔ voy a salir pronto

Parameterisation

I categorical events are unrelated
prefixes/suffixes: normal, normally, abnormally, . . .
verb inflections: comer, comi, comia, comio, . . .
gender/number: gato, gatos, gata, gatas, . . .

7 / 31

IBM 1-2: strong assumptions

Independence assumptions

I p(a|m,n) does not depend on lexical choices
a1 cute2 house3 ↔ una1 casa3 bella2
a1 cosy2 house3 ↔ una1 casa3 confortable2

I p(f |e) can only reasonably explain one-to-one alignments
I will be leaving soon ↔ voy a salir pronto

Parameterisation

I categorical events are unrelated
prefixes/suffixes: normal, normally, abnormally, . . .
verb inflections: comer, comi, comia, comio, . . .
gender/number: gato, gatos, gata, gatas, . . .

7 / 31

Conditional probability distributions

CPD: condition c ∈ C, outcome o ∈ O, and θc ∈ R|O|

p(o|c) = Cat(θc) (1)

I p(o|c) = θc,o

I 0 ≤ θc,o ≤ 1

I
∑

o θc,o = 1

I O(|c| × |o|) parameters

How bad is it for IBM model 1?

8 / 31

Conditional probability distributions

CPD: condition c ∈ C, outcome o ∈ O, and θc ∈ R|O|

p(o|c) = Cat(θc) (1)

I p(o|c) = θc,o

I 0 ≤ θc,o ≤ 1

I
∑

o θc,o = 1

I O(|c| × |o|) parameters

How bad is it for IBM model 1?

8 / 31

Conditional probability distributions

CPD: condition c ∈ C, outcome o ∈ O, and θc ∈ R|O|

p(o|c) = Cat(θc) (1)

I p(o|c) = θc,o

I 0 ≤ θc,o ≤ 1

I
∑

o θc,o = 1

I O(|c| × |o|) parameters

How bad is it for IBM model 1?

8 / 31

Conditional probability distributions

CPD: condition c ∈ C, outcome o ∈ O, and θc ∈ R|O|

p(o|c) = Cat(θc) (1)

I p(o|c) = θc,o

I 0 ≤ θc,o ≤ 1

I
∑

o θc,o = 1

I O(|c| × |o|) parameters

How bad is it for IBM model 1?

8 / 31

Probability tables

p(f |e)

English ↓ French →
anormal normal normalmente . . .

abnormal 0.7 0.1 0.01 . . .

normal 0.01 0.6 0.2 . . .

normally 0.001 0.25 0.65 . . .

I grows with size of vocabularies

I no parameter sharing

9 / 31

Logistic CPDs

CPD: condition c ∈ C and outcome o ∈ O

p(o|c) =
exp(w>h(c, o))∑
o′ exp(w>h(c, o′))

(2)

I w ∈ Rd is a weight vector

I h : C × O → Rd is a feature function

I d parameters

I computing CPD requires O(|c| × |o| × d) operations

How bad is it for IBM model 1?

10 / 31

CPDs as functions

h : E × F → Rd

Events ↓ Features →

English French
normal normal- -normal ab- -ly
normal normal- -normal a- -mente

abnormal
anormal 0 0 1 1 0
normal 0 0 1 0 0
normalmente 0 1 0 0 0

normal
anormal 0 0 1 0 0
normal 1 0 0 0 0
normalmente 0 1 0 0 0

normally
anormal 0 0 1 0 0
normal 0 1 0 0 0
normalmente 0 1 0 0 1

Weights → 1.5 0.3 0.3 0.8 1.1

I computation still grows with size of vocabularies
I but far less parameters to estimate

11 / 31

Content

Remarks IBM models

Representation

Feature rich models

Feature-rich IBM 1-2

Overview of Neural Networks

Neural IBM 1

12 / 31

Log-linear models

I Log-linear models revolve around the concept of features. In
short, features are basically,
Something about the context that will be useful in predicting

I Enhancing models with features that capture the dependencies
between different morphologically inflected word forms. The
standard parameterisation using categorical distributions is
limited with respect to the features it can capture

13 / 31

Log-linear models

I Log-linear models revolve around the concept of features. In
short, features are basically,
Something about the context that will be useful in predicting

I Enhancing models with features that capture the dependencies
between different morphologically inflected word forms. The
standard parameterisation using categorical distributions is
limited with respect to the features it can capture

13 / 31

Content

Remarks IBM models

Representation

Feature rich models

Feature-rich IBM 1-2

Overview of Neural Networks

Neural IBM 1

14 / 31

Berg-Kirkpatrick et al. [2010]

Lexical distribution in IBM model 1

p(f |e) =
exp(w>lexhlex(e, f))∑
f ′ exp(w>lexhlex(e, f ′))

(3)

Features

I f ∈ VF is a French word (decision), e ∈ VE is an English word
(conditioning context), w ∈ Rd is the parameter vector, and
h : VFVE → Rd is a feature vector function.

I prefixes/suffixes

I character n-grams

I POS tags

15 / 31

Extension: lexicalised jump distribution

p(δ|e) =
exp(w>disthdist(e, δ))∑
δ′ exp(w>disthdist(e, δ′))

(4)

Features

I POS tags

I suffixes/prefixes

I lemma

I jump values

I m,n, j, i (values used to compute jump)

16 / 31

Problems with features

I We can see et−2 = farmers is compatible with et = hay (in
the context farmers grow hay)

I and et−1 = eat is also compatible (in the context cows eat
hay).

17 / 31

Problems with features

I We can see et−2 = farmers is compatible with et = hay (in
the context farmers grow hay)

I and et−1 = eat is also compatible (in the context cows eat
hay).

17 / 31

Problems with features

I Features depend on et−1, and another set of features
dependent on et−2, neither set of features can rule out the
unnatural phrase farmers eat hay

I Combination of features greatly expands the parameters:
instead of O(|V |2) parameters for each pair ei−1, ei,
We need O(|V |3) parameters for each triplet ei−2, ei−1, ei

I Learning using these combination features, e.g. neural
networks

18 / 31

Problems with features

I Features depend on et−1, and another set of features
dependent on et−2, neither set of features can rule out the
unnatural phrase farmers eat hay

I Combination of features greatly expands the parameters:
instead of O(|V |2) parameters for each pair ei−1, ei,
We need O(|V |3) parameters for each triplet ei−2, ei−1, ei

I Learning using these combination features, e.g. neural
networks

18 / 31

Problems with features

I Features depend on et−1, and another set of features
dependent on et−2, neither set of features can rule out the
unnatural phrase farmers eat hay

I Combination of features greatly expands the parameters:
instead of O(|V |2) parameters for each pair ei−1, ei,
We need O(|V |3) parameters for each triplet ei−2, ei−1, ei

I Learning using these combination features, e.g. neural
networks

18 / 31

Content

Remarks IBM models

Representation

Feature rich models

Feature-rich IBM 1-2

Overview of Neural Networks

Neural IBM 1

19 / 31

Function that cannot be solved by a linear transformation

I For example the function x ∈ −1, 1 and outputs y = 1
if both x1 and x2 are equal and y = −1 otherwise.

I We can use a linear combination y = Wx+ b

I Or a multi-layer perceptron:

h = step(Wxhx + bh)

y = whyh+ by.
(5)

20 / 31

Function that cannot be solved by a linear transformation

I For example the function x ∈ −1, 1 and outputs y = 1
if both x1 and x2 are equal and y = −1 otherwise.

I We can use a linear combination y = Wx+ b

I Or a multi-layer perceptron:

h = step(Wxhx + bh)

y = whyh+ by.
(5)

20 / 31

Function that cannot be solved by a linear transformation

I For example the function x ∈ −1, 1 and outputs y = 1
if both x1 and x2 are equal and y = −1 otherwise.

I We can use a linear combination y = Wx+ b

I Or a multi-layer perceptron:

h = step(Wxhx + bh)

y = whyh+ by.
(5)

20 / 31

Function that cannot be solved by a linear transformation
I Computation is split into two stages:

I Calculation of the hidden layer , which takes in input x and
outputs a vector of hidden variables h

I and calculation of the output layer, which takes in h and
calculates the final result y.

I Both layers consist of an affine transform using weights W
and biases b, followed by a step() function, which calculates
the following:

step(x) =

{
1, if x > 0.

−1, otherwise.
(6)

I

21 / 31

Function that cannot be solved by a linear transformation
I Computation is split into two stages:
I Calculation of the hidden layer , which takes in input x and

outputs a vector of hidden variables h

I and calculation of the output layer, which takes in h and
calculates the final result y.

I Both layers consist of an affine transform using weights W
and biases b, followed by a step() function, which calculates
the following:

step(x) =

{
1, if x > 0.

−1, otherwise.
(6)

I

21 / 31

Function that cannot be solved by a linear transformation
I Computation is split into two stages:
I Calculation of the hidden layer , which takes in input x and

outputs a vector of hidden variables h
I and calculation of the output layer, which takes in h and

calculates the final result y.

I Both layers consist of an affine transform using weights W
and biases b, followed by a step() function, which calculates
the following:

step(x) =

{
1, if x > 0.

−1, otherwise.
(6)

I

21 / 31

Function that cannot be solved by a linear transformation
I Computation is split into two stages:
I Calculation of the hidden layer , which takes in input x and

outputs a vector of hidden variables h
I and calculation of the output layer, which takes in h and

calculates the final result y.
I Both layers consist of an affine transform using weights W

and biases b, followed by a step() function, which calculates
the following:

step(x) =

{
1, if x > 0.

−1, otherwise.
(6)

I

21 / 31

Function that cannot be solved by a linear transformation
I Computation is split into two stages:
I Calculation of the hidden layer , which takes in input x and

outputs a vector of hidden variables h
I and calculation of the output layer, which takes in h and

calculates the final result y.
I Both layers consist of an affine transform using weights W

and biases b, followed by a step() function, which calculates
the following:

step(x) =

{
1, if x > 0.

−1, otherwise.
(6)

I 21 / 31

Training Neural Networks

I We would like to train the parameters of the MLP

I We need to define the loss function l(), calculate the
derivative of the loss with respect to the parameters, then
take a step in the direction that will reduce the loss.

I e.g. squared-error loss, common in regression problems
which measures the difference between the calculated value y
and correct value y∗:
l(y∗, y) = (y∗ − y)2

I however the step() function is not very derivative friendly

I We can use non-linear functions, hyperbolic tangent (tanh)
function

22 / 31

Training Neural Networks

I We would like to train the parameters of the MLP

I We need to define the loss function l(), calculate the
derivative of the loss with respect to the parameters, then
take a step in the direction that will reduce the loss.

I e.g. squared-error loss, common in regression problems
which measures the difference between the calculated value y
and correct value y∗:
l(y∗, y) = (y∗ − y)2

I however the step() function is not very derivative friendly

I We can use non-linear functions, hyperbolic tangent (tanh)
function

22 / 31

Training Neural Networks

I We would like to train the parameters of the MLP

I We need to define the loss function l(), calculate the
derivative of the loss with respect to the parameters, then
take a step in the direction that will reduce the loss.

I e.g. squared-error loss, common in regression problems
which measures the difference between the calculated value y
and correct value y∗:
l(y∗, y) = (y∗ − y)2

I however the step() function is not very derivative friendly

I We can use non-linear functions, hyperbolic tangent (tanh)
function

22 / 31

Training Neural Networks

I We would like to train the parameters of the MLP

I We need to define the loss function l(), calculate the
derivative of the loss with respect to the parameters, then
take a step in the direction that will reduce the loss.

I e.g. squared-error loss, common in regression problems
which measures the difference between the calculated value y
and correct value y∗:
l(y∗, y) = (y∗ − y)2

I however the step() function is not very derivative friendly

I We can use non-linear functions, hyperbolic tangent (tanh)
function

22 / 31

Training Neural Networks

I We would like to train the parameters of the MLP

I We need to define the loss function l(), calculate the
derivative of the loss with respect to the parameters, then
take a step in the direction that will reduce the loss.

I e.g. squared-error loss, common in regression problems
which measures the difference between the calculated value y
and correct value y∗:
l(y∗, y) = (y∗ − y)2

I however the step() function is not very derivative friendly

I We can use non-linear functions, hyperbolic tangent (tanh)
function

22 / 31

Training Neural Networks
I We perform the full calculation of the loss function:

I Computation graph:

I We use chain rule of derivatives for each set of parameters:

I

23 / 31

Training Neural Networks
I We perform the full calculation of the loss function:

I Computation graph:

I We use chain rule of derivatives for each set of parameters:

I

23 / 31

Training Neural Networks
I We perform the full calculation of the loss function:

I Computation graph:

I We use chain rule of derivatives for each set of parameters:

I

23 / 31

Training Neural Networks
I We perform the full calculation of the loss function:

I Computation graph:

I We use chain rule of derivatives for each set of parameters:

I

23 / 31

Content

Remarks IBM models

Representation

Feature rich models

Feature-rich IBM 1-2

Overview of Neural Networks

Neural IBM 1

24 / 31

IBM: non-linear models

Nothing prevents us from using more expressive functions
[Kočiský et al., 2014]

I p(o|c) = softmax(fθ(c))

I p(o|c) = exp(fθ(c,o)))∑
o′ exp(fθ(c,o

′)))

where fθ(·) is a neural network with parameters θ
Features

I induce features (word-level, char-level, n-gram level)

I pre-trained embeddings

25 / 31

IBM: non-linear models

Nothing prevents us from using more expressive functions
[Kočiský et al., 2014]

I p(o|c) = softmax(fθ(c))

I p(o|c) = exp(fθ(c,o)))∑
o′ exp(fθ(c,o

′)))

where fθ(·) is a neural network with parameters θ
Features

I induce features (word-level, char-level, n-gram level)

I pre-trained embeddings

25 / 31

IBM: non-linear models

Nothing prevents us from using more expressive functions
[Kočiský et al., 2014]

I p(o|c) = softmax(fθ(c))

I p(o|c) = exp(fθ(c,o)))∑
o′ exp(fθ(c,o

′)))

where fθ(·) is a neural network with parameters θ
Features

I induce features (word-level, char-level, n-gram level)

I pre-trained embeddings

25 / 31

IBM: non-linear models

Nothing prevents us from using more expressive functions
[Kočiský et al., 2014]

I p(o|c) = softmax(fθ(c))

I p(o|c) = exp(fθ(c,o)))∑
o′ exp(fθ(c,o

′)))

where fθ(·) is a neural network with parameters θ
Features

I induce features (word-level, char-level, n-gram level)

I pre-trained embeddings

25 / 31

Neural IBM

I fθ(e) = softmax(WtHE(e) + bt) note that the softmax is
necessary to make tθ produce valid parameters for the
categorical distribution
Wt ∈ R|VF |×dh and bt ∈ R|VF |

26 / 31

Neural IBM

I hE(e) is defined below with WhE ∈ Rdh×de and bhE ∈ Rdh
hE(e) = tanh(WhErE(e) + bhE︸ ︷︷ ︸

affine

)

︸ ︷︷ ︸
elementwise nonlinearity

I rE(e) = WrEvE(e) is a word embedding of e with
WrE ∈ Rde×|VE |

I vE(e) ∈ {0, 1}vE is a one-hot encoding of e, thus∑
i vE(e)i = 1

I θ = {Wt, bt,WhE , bhE ,WrE}
I Other architectures are also possible, one can use different

parameterisations that may use more or less parameters. For
example, with a CNN one could make this function sensitive
to characters in the words, something along these lines could
also be done with RNNs.

where
27 / 31

Neural IBM

I hE(e) is defined below with WhE ∈ Rdh×de and bhE ∈ Rdh
hE(e) = tanh(WhErE(e) + bhE︸ ︷︷ ︸

affine

)

︸ ︷︷ ︸
elementwise nonlinearity

I rE(e) = WrEvE(e) is a word embedding of e with
WrE ∈ Rde×|VE |

I vE(e) ∈ {0, 1}vE is a one-hot encoding of e, thus∑
i vE(e)i = 1

I θ = {Wt, bt,WhE , bhE ,WrE}
I Other architectures are also possible, one can use different

parameterisations that may use more or less parameters. For
example, with a CNN one could make this function sensitive
to characters in the words, something along these lines could
also be done with RNNs.

where
27 / 31

Neural IBM

I hE(e) is defined below with WhE ∈ Rdh×de and bhE ∈ Rdh
hE(e) = tanh(WhErE(e) + bhE︸ ︷︷ ︸

affine

)

︸ ︷︷ ︸
elementwise nonlinearity

I rE(e) = WrEvE(e) is a word embedding of e with
WrE ∈ Rde×|VE |

I vE(e) ∈ {0, 1}vE is a one-hot encoding of e, thus∑
i vE(e)i = 1

I θ = {Wt, bt,WhE , bhE ,WrE}
I Other architectures are also possible, one can use different

parameterisations that may use more or less parameters. For
example, with a CNN one could make this function sensitive
to characters in the words, something along these lines could
also be done with RNNs.

where
27 / 31

Neural IBM

I hE(e) is defined below with WhE ∈ Rdh×de and bhE ∈ Rdh
hE(e) = tanh(WhErE(e) + bhE︸ ︷︷ ︸

affine

)

︸ ︷︷ ︸
elementwise nonlinearity

I rE(e) = WrEvE(e) is a word embedding of e with
WrE ∈ Rde×|VE |

I vE(e) ∈ {0, 1}vE is a one-hot encoding of e, thus∑
i vE(e)i = 1

I θ = {Wt, bt,WhE , bhE ,WrE}

I Other architectures are also possible, one can use different
parameterisations that may use more or less parameters. For
example, with a CNN one could make this function sensitive
to characters in the words, something along these lines could
also be done with RNNs.

where
27 / 31

Neural IBM

I hE(e) is defined below with WhE ∈ Rdh×de and bhE ∈ Rdh
hE(e) = tanh(WhErE(e) + bhE︸ ︷︷ ︸

affine

)

︸ ︷︷ ︸
elementwise nonlinearity

I rE(e) = WrEvE(e) is a word embedding of e with
WrE ∈ Rde×|VE |

I vE(e) ∈ {0, 1}vE is a one-hot encoding of e, thus∑
i vE(e)i = 1

I θ = {Wt, bt,WhE , bhE ,WrE}
I Other architectures are also possible, one can use different

parameterisations that may use more or less parameters. For
example, with a CNN one could make this function sensitive
to characters in the words, something along these lines could
also be done with RNNs.

where
27 / 31

MLE

I We can use maximum likelihood estimation (MLE) to choose
the parameters of our deterministic function fθ.

I We know at least one general (convex) optimisation
algorithm, i.e. gradient ascent.
This is a gradient-based procedure which chooses θ so that
the gradient of our objective with respect to θ is zero.

I IBM1 would be convex with standard tabular CPDs, but
FFNNs with 1 non-linear hidden layer (or more) make it
non-convex.

I Nowadays, we have tools that can perform automatic
differentiation for us.
If our functions are differentiable, we can get gradients for
them.

28 / 31

MLE

I We can use maximum likelihood estimation (MLE) to choose
the parameters of our deterministic function fθ.

I We know at least one general (convex) optimisation
algorithm, i.e. gradient ascent.
This is a gradient-based procedure which chooses θ so that
the gradient of our objective with respect to θ is zero.

I IBM1 would be convex with standard tabular CPDs, but
FFNNs with 1 non-linear hidden layer (or more) make it
non-convex.

I Nowadays, we have tools that can perform automatic
differentiation for us.
If our functions are differentiable, we can get gradients for
them.

28 / 31

MLE

I We can use maximum likelihood estimation (MLE) to choose
the parameters of our deterministic function fθ.

I We know at least one general (convex) optimisation
algorithm, i.e. gradient ascent.
This is a gradient-based procedure which chooses θ so that
the gradient of our objective with respect to θ is zero.

I IBM1 would be convex with standard tabular CPDs, but
FFNNs with 1 non-linear hidden layer (or more) make it
non-convex.

I Nowadays, we have tools that can perform automatic
differentiation for us.
If our functions are differentiable, we can get gradients for
them.

28 / 31

MLE

I We can use maximum likelihood estimation (MLE) to choose
the parameters of our deterministic function fθ.

I We know at least one general (convex) optimisation
algorithm, i.e. gradient ascent.
This is a gradient-based procedure which chooses θ so that
the gradient of our objective with respect to θ is zero.

I IBM1 would be convex with standard tabular CPDs, but
FFNNs with 1 non-linear hidden layer (or more) make it
non-convex.

I Nowadays, we have tools that can perform automatic
differentiation for us.
If our functions are differentiable, we can get gradients for
them.

28 / 31

MLE

I We still need to be able to express the functional form of the
likelihood.

I Let us then express the log-likelihood (which is the objective
we maximise in MLE) of a single sentence pair as a function
of our free parameters:

L(θ|em0 , fn1) = log pθ(f
m
1 |el0) (7)

I Note that in fact our log-likelihood is a sum of independent
terms Lj(θ|em0 , fj), thus we can characterise the contribution
of each French word in each sentence pair as

29 / 31

MLE

I We still need to be able to express the functional form of the
likelihood.

I Let us then express the log-likelihood (which is the objective
we maximise in MLE) of a single sentence pair as a function
of our free parameters:

L(θ|em0 , fn1) = log pθ(f
m
1 |el0) (7)

I Note that in fact our log-likelihood is a sum of independent
terms Lj(θ|em0 , fj), thus we can characterise the contribution
of each French word in each sentence pair as

29 / 31

MLE

I We still need to be able to express the functional form of the
likelihood.

I Let us then express the log-likelihood (which is the objective
we maximise in MLE) of a single sentence pair as a function
of our free parameters:

L(θ|em0 , fn1) = log pθ(f
m
1 |el0) (7)

I Note that in fact our log-likelihood is a sum of independent
terms Lj(θ|em0 , fj), thus we can characterise the contribution
of each French word in each sentence pair as

29 / 31

MLE

I NN toolkits implement gradient-based optimisation for us.

I To get a loss, we simply negate our objective.
You will find a lot of material that mentions some categorical
cross-entropy loss.

l(θ) = −
∑

(em0 ,f
l
1)

p?(f
l
1|em0) log pθ(f

m
1 |el0)

≈ − 1

S
log pθ(f

l
1|em0)

(8)

30 / 31

MLE

I NN toolkits implement gradient-based optimisation for us.

I To get a loss, we simply negate our objective.
You will find a lot of material that mentions some categorical
cross-entropy loss.

l(θ) = −
∑

(em0 ,f
l
1)

p?(f
l
1|em0) log pθ(f

m
1 |el0)

≈ − 1

S
log pθ(f

l
1|em0)

(8)

30 / 31

MLE

I With SGD we sample a subset S of the training data and
compute a loss for that sample.

I We then use automatic differentiation to obtain a gradient
∇θl(θ|S). This gradient is used to update our deterministic
parameters θ.

θ(t+1) = θ(t) − δt∇θ(t) l(θ
(t)|S) (9)

31 / 31

MLE

I With SGD we sample a subset S of the training data and
compute a loss for that sample.

I We then use automatic differentiation to obtain a gradient
∇θl(θ|S). This gradient is used to update our deterministic
parameters θ.

θ(t+1) = θ(t) − δt∇θ(t) l(θ
(t)|S) (9)

31 / 31

References I

Taylor Berg-Kirkpatrick, Alexandre Bouchard-Côté, John DeNero,
and Dan Klein. Painless unsupervised learning with features. In
Human Language Technologies: The 2010 Annual Conference of
the North American Chapter of the Association for
Computational Linguistics, pages 582–590, Los Angeles,
California, June 2010. Association for Computational Linguistics.
URL http://www.aclweb.org/anthology/N10-1083.

Tomáš Kočiský, Karl Moritz Hermann, and Phil Blunsom. Learning
bilingual word representations by marginalizing alignments. In
Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pages
224–229, Baltimore, Maryland, June 2014. Association for
Computational Linguistics. URL
http://www.aclweb.org/anthology/P14-2037.

32 / 31

http://www.aclweb.org/anthology/N10-1083
http://www.aclweb.org/anthology/P14-2037

References II

Kristina Toutanova and Michel Galley. Why initialization matters
for ibm model 1: Multiple optima and non-strict convexity. In
Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies,
pages 461–466, Portland, Oregon, USA, June 2011. Association
for Computational Linguistics.

Stephan Vogel, Hermann Ney, and Christoph Tillmann.
HMM-based word alignment in statistical translation. In
Proceedings of the 16th Conference on Computational
Linguistics - Volume 2, COLING ’96, pages 836–841,
Stroudsburg, PA, USA, 1996. Association for Computational
Linguistics. doi: 10.3115/993268.993313. URL
http://dx.doi.org/10.3115/993268.993313.

33 / 31

http://dx.doi.org/10.3115/993268.993313

	Remarks IBM models
	Representation
	Feature rich models
	Feature-rich IBM 1-2
	Overview of Neural Networks
	Neural IBM 1

