Morphology in Machine Translation

Joachim Daiber

Institute for Logic, Language and Computation University of Amsterdam

Today's lecture

- Introduction
- ▶ Part 1: Morphology induction
- Part 2: Morphology and syntax
- Soft enforcement of agreement constraints in syntactic MT Georgi, Tom and Maartje

Challenges:

Morphological agreement over long distances

Challenges:

Morphological agreement over long distances

Challenges:

Morphological agreement over long distances

Challenges:

- Morphological agreement over long distances
- Relatively freer word order

Challenges:

- Morphological agreement over long distances
- Relatively freer word order

Challenges:

- Morphological agreement over long distances
- Relatively freer word order
- Data sparsity

- Established methods often do not work well
- ► One example: Source-side reordering

Morphology Induction

Morphology induction from word embeddings

Paper: Unsupervised morphology induction using word embeddings. *Radu Soricut and Franz Och, NAACL 2015.*

Question: Can we induce representations of morphology from representations of words?

Word embeddings

- vocabulary V, embedding function e: $V \rightarrow \mathbf{R}^n$
- · vector space encodes semantic similarity
 - e(car) ≃ e(automobile), e(car) ≠ e(seahorse)
- · vector space encodes compositionality
 - semantic: e(king) e(man) + e(woman) ≃ e(queen)
 - syntactic: $e(cars) e(car) + e(fireman) \approx e(firemen)$
- · vector space encodes syntactic/semantic transformations
 - anti+ \approx e(anticoruption) e(corruption)

Morphology induction from word embeddings

Q: What do we want?

A: We want high-quality embeddings for all words (even ones outside V)

×××

Morphology induction from word embeddings

Q: What do we want?

A: We want *morphology-based transformations* that can accurately analyze words (even ones unseen at training time)

Algorithm: Steps

Steps:

1. From V, extract candidates for morphological rules (prefix & suffix only)

Algorithm: Steps

Steps:

1. From V, extract candidates for morphological rules (prefix & suffix only)

Algorithm: Steps

Steps:

2. Query against embedding space: morphology does not shift meaning

<pre>suffix:ed:ing</pre>	prefix: $\epsilon: S$
adored adorned affected blamed blitzed blogged stayed stepped stopped weaned wed wedged whirled	aura aux ave canned cans car care crape cream creams miles mitten mothers
<pre>rank(blamed → blaming) = 1 rank(stopped → stopping)= 2 rank(wed → wing) = 28609</pre>	<pre>rank(care → Scare) = 57778 rank(cream → Scream)= 9434 rank(miles → Smiles)= 18800</pre>

Algorithm: Steps

Steps:

2. Query against embedding space: morphology does not shift meaning

prefix:un:

unabated unable unabridged... unaware unbalance unbeaten... undoing undone undoubted... untrusted untrustworthy...

```
rank(unaware \rightarrow aware) = 1
rank(undone \rightarrow done) = 129
```


Algorithm: Steps

Steps:

2. Query against embedding space: morphology does not shift meaning

morphology shifts meaning consistently

prefix:un:c

Algorithm: Steps

Steps:

3. Extract candidate rules using embedding-based stats

	Candidate Rule	Direction	#Correct	#Total	Acc10	
_	suffix:h:a	ÎТеh	1	449	0.4%	
1	suffix:o:es	↑топо	7	688	1.0%	
μ.	prefix:D:W	↑Daring	9	675	1.3%	
-	prefix:un: ɛ	↑undelivered	166	994	23.3%	
8	suffix:ed:ing 1procured		2138	4714	56.2%	
٥						
	<pre>suffix:ating:ate</pre>	↑formulating	255	395	74.7%	
	<pre>suffix:sed:zed</pre>	† victimised	153	186	90.9%	

Algorithm: Steps

Steps:

4. Use rules to extract lexicalized, weighted morphological transformations

Start	Rule + Direction = Transformation	End	Cosine	Rank
recreations	<pre>suffix:ions:e + tinvestigations</pre>	recreate	0.69	1
recreations	<pre>suffix:tions:te + tinvestigations</pre>	recreate	0.70	1
recreations	<pre>suffix:ions:ed + idelineations</pre>	recreated	0.51	29
recreations	<pre>suffix:ions:ing + preconstruction</pre>	recreating	0.72	1
unaware	<pre>prefix:un:ε + ↑uncivilized</pre>	aware	0.77	1
unaware	<pre>prefix:un:e + jundelivered</pre>	aware	0.63	7

Algorithm: Output

Output (I): labeled, weighted, cyclic, directed multigraph GVMorph

 $\boldsymbol{\cdot}$ words are nodes, morphological transformations are (weighted) edges

Algorithm: Output

Output (II): labeled, weighted, acyclic, directed graph DV_{Morph}

· words are nodes, morphological mappings are weighted edges

Application

Analyze words outside V

1. Train time: extract and count all paths ending in a "fix-point" from the directed acyclic graph D^{V}_{Morph}

· each path is called a "rule sequence"

rule sequence	count
suffix:s:e	3119
suffix:ed: ɛ	687
suffix:ing:ed	412
prefix:un: ɛ	207
suffix:ness: e	162
<pre>suffix:ness:ly</pre>	25
<pre>suffix:y:ier,suffix:er:ness</pre>	10
<pre>prefix:un:ɛ,suffix:ed:ing</pre>	5

Application

Analyze words outside V

- 2. Run time: apply each rule sequence in descending order of counts
 - if rule fires, check that result has count > 0 and in-degree > 0
 - · stop at first winner

Evaluation

Training Setup

	Language	Train Set	Tokens	V	$ G^{V_{Morph}} $	$ D^V_{Morph} $
1	EN	Wiki-EN	1.1b	1.2m	780k	75,823
5	DE	WMT-DE	1.2b	2.9m	3.7m	169,017
8	EN	News-EN	120b	1.0m	2.9m	98,268
ē	DE	News-DE	20b	1.8m	6.7m	351,980

Evaluation

Language	Train Set	Tokens	V	$ G^{V_{Morph}} $	$ D^V_{Morph} $
EN	Wiki-EN	1.1b	1.2m	780k	75,823
DE	WMT-DE	1.2b	2.9m	3.7m	169,017
EN	News-EN	120b	1.0m	2.9m	98,268
DE	News-DE	20b	1.8m	6.7m	351,980

size: 2034 pairs

impossibilities	unattainableness	8.8
deregulating	liberation	8.0
baseness	unworthiness	4.0
transmigrating	born	1.1

	RW-EN Testset					
	Uneml	bedded	Spear	man ρ		
System	Wiki-EN	News-EN	Wiki-EN	News-EN		
SkipGram	78	177	35.8	9 44.7 +7		
SkipGram+Morph	1	0	41.8	52.0		

Evaluation

E١	aluation	on simil	arity data	asets	(RG-D	E, RW-E	N) Edel	65 pairs stein	Juwel	3.8
	Language	Train Set	Tokens	V	$ G^{V}_{Morph} $	D ^V _{Morph}	Auto	gramm	Unterschrift	3.5
	EN	Wiki-EN	1.1b	1.2m	780k	75,823	Kraf	fahrzeug	Magier	0.5
	DE	WMT-DE	1.2b	2.9m	3.7m	169,017				
	EN	News-EN	120b	1.0m	2.9m	98,268		RW-E	N Testset	
	DE	News-DE	20b	1.8m	6.7m	351,980	Unem	bedded	Spear	man p
						System	Wiki-EN	News-EN	Wiki-EN	News-EN
						SkipGram	80	177	35.8 🗸	9744.7)+7
					Sk	ipGram+Morph	i 1	0	41.8	52.0
						RG-DE	E Testset			
					Unembe	edded	:	Spearma	nρ	
			System	WN	/IT-DE	News-DE	WMT-I	DE	News-DE	
			SkipGram		0	20	62.4	1	62.1	7
		SkipGra	am+Morph		0	0	64.1		[™] 69.1	

Conclusions

- 1. Method for inducing morphological transformations between words
 - from scratch, unsupervised, language agnostic
- 2. Provides morphology-based structure over embedding spaces
- Provides high-quality embeddings for out-of-vocabulary and lowcount morphological variants

Compounds

Compound induction from word embeddings

Paper: Splitting Compounds by Semantic Analogy Joachim Daiber, Lautaro Quiroz, Roger Wechsler and Stella Frank, DMTW 2015.

Question: Can we learn to split compounds using those sub-word representations?

Compounds in MT

Compound words...

- ... make life hard for standard NLP applications, incl. MT
- ... are often modeled with shallow information (e.g. Moses frequency-based splitter)

Question: Can we use distributional semantics to do deeper processing of compounds in a simple way?

Splitting compounds for SMT

- Koehn and Knight (2003) showed PBMT systems can better deal with compounds if they are split into their meaningful parts
- ► Difficulty: many possible splits, we need to choose the correct ones

Figure: Compound splitting example from Koehn and Knight (2003).

Compounds and the semantic vector space

Semantic vector space

- ► Word embeddings saw surge of successful applications recently
- ► Basic idea: "You shall know a word by the company it keeps"
 - Words are mapped to vectors of real numbers in low dimensional space
 - These vectors are estimated on large amounts of text data using a neural network
Ň×

Compounds and the semantic vector space

(a) Compounds with same modifier.

(b) Compounds with the same head.

The analogy test

- ► We model compounds based on their modifiers
- Potential compound splits are judged by how similar they are to a set of prototypical compounds for each modifier

Analogy test: Mauszeiger is to Zeiger what Mausklick is to Klick?

(mouse pointer) (pointer) (mouse click) (click)

Extracting potential compound splits

For all words in the vocabulary:

- ► Extract all possible string prefixes ≥ 4: Bundespräsident → Bund, Bunde, Bundes, ...
- ► Judge each Modifier+Compound pair by how well it explains others

Judging potential compound splits

All potential compounds with prefix Maus

Maus kostüm Maus|zeiger Mauslstämme Mauslklick Maus|hirn Maus|tasten Mauslersatz Mauslmutanten Mauslknopf Maus|steuerung Maus|bewegung Maus|gene Mauslklicks Mauslhirns Maus zeiger Maus|hirnen Mauslbedienung

... (up to 500)

Judging potential compound splits

All potential compounds \times All potential compounds

Maus kostüm Mauslzeiger Mauslstämme Mauslklick Maus|hirn Maus|tasten Mauslersatz Mauslmutanten Mauslknopf Maus|steuerung Maus bewegung Mauslgene Mauslklicks Mauslhirns Maus/zeiger Maus|hirnen Mauslbedienung

... (up to 500) Maus kostüm Mauslzeiger Mauslstämme Mauslklick Maus|hirn Maus|tasten Mauslersatz Mauslmutanten Mauslknopf Maus|steuerung Maus|bewegung Mauslgene Mauslklicks Mauslhirns Maus/zeiger Maus|hirnen Mauslbedienung

... (up to 500)

Judging potential compound splits

All potential compounds \times All potential compounds

Maus kostüm • Mauslzeiger Mauslstämme Mauslklick Maus|hirn Maus|tasten Mauslersatz Mauslmutanten Mauslknopf Maus|steuerung Maus bewegung Maus|gene Mauslklicks Mauslhirns Maus/zeiger Maus|hirnen Mauslbedienung

... (up to 500)

(up to 500)

Judging potential compound splits

All potential compounds \times All potential compounds

Judging potential compound splits

Perform analogy test: Mauszeiger is to Zeiger what Mausklick is to Klick?

(mouse pointer) (pointer) (mouse click) (click)

Computational considerations

- Analogy test is expensive!
- ► True and predicted vectors:
 - V_{Mausklick}
 - $\ \hat{\nu}_{Mausklick} = Mauszeiger Zeiger + Klick$
- ► Two evaluation functions: RANK and COSINE

Computational considerations

Exact but slow implementation:

$$\operatorname{RANK}(\mathbf{v}_{cmpd}, \hat{\mathbf{v}}_{cmpd}) = \operatorname{RANK} \text{ OF } \mathbf{v}_{cmpd} \text{ IN } \arg \operatorname{sort}_{w \in V} \left[\operatorname{COSINE} \left(\mathbf{v}_{w}, \hat{\mathbf{v}}_{cmpd} \right) \right]$$

- Approximate but fast implementation:
 - Approximate k-nearest neighbor search
 - We use the Spotify Annoy library (C++) to perform the search
- Maus|zeiger explains Maus|klick IFF

 $Rank(\mathbf{v}_{cmpd}, \hat{\mathbf{v}}_{cmpd}) < 100 \quad \text{AND} \quad Cosine(\mathbf{v}_{cmpd}, \hat{\mathbf{v}}_{cmpd}) > 0.5$

Prototypes

Compounds that are good examples of a compound modifier.

- ► These are best at explaining other similar modifier+compound pairs
- We call this set the modifier's *prototypes*

Extracting prototypes

Mauslkostüm Mauslzeiger Mauslstämme Maus|klick Maus|hirn Mausltasten Mauslersatz Mauslmutanten Maus|knopf Maus|steuerung Maus|bewegung Mauslgene Mauslklicks Maus|hirns Maus/zeiger Mauslhirnen Mauslbedienung

... (up to 500)

Mauslkostüm Mauslzeiger Mauslstämme Maus|klick Maus|hirn Mausltasten Mauslersatz Mauslmutanten Maus|knopf Maus|steuerung Maus|bewegung Mauslgene Mauslklicks Maus|hirns Maus/zeiger Mauslhirnen Mauslbedienung

(up to 500)

Extracting prototypes

Extracting prototypes

Mauslkostüm Mauslkostüm Mauslzeiger Mauslzeiger Mauslstämme Mauslstämme Maus|hirn Maus|hirn Mauslersatz Mauslersatz Mauslmutanten Mauslmutanten Maus|knopf Maus|knopf Maus|steuerung Maus|steuerung Mauslgene Maus|gene Maus|hirns Maus|hirns Maus/zeiger Mauslhirnen Mauslhirnen Mauslbedienung Mauslbedienung ... (up to 500) (up to 500)

Extracting prototypes

Extracting prototypes

Extracted prototypes for Maus-

Prototype	Evidence words
V-Zeiger V-Stämme V-Kostüm V-Steuerung	-Bewegung -Klicks -Klick -Tasten -Zeiger -Mutanten -Gene -Hirnen -Stämme -Knopf -Hirn -Hirns -Kostüm -Ersatz -Bedienung -Steuerung
5	

Compound splitting: Mausmutation

Mausmutation

► We start from the left...

Compound splitting: Mausmutation

Mausmutation

► Do I know the modifier Mau? No!

Compound splitting: Mausmutation

Mausmutation

► Do I know the modifier Maus? Yes!

Compound splitting: Mausmutation

Mausmutation

► Do I know the modifier Maus? Yes!

Prototypes:

- -Zeiger
- -Stämme
- -Kostüm
- Steuerung

Compound splitting: Mausmutation

Mausmutation

► Do I know the modifier Maus? Yes!

Prototypes:

- -Zeiger
- -Stämme √
- \rightarrow *Mausmutation* is to *Mutation* what *Mausstämme* is to *Stämme*.

- -Kostüm
- -Steuerung

Compound splitting: Mausmutation

Mausmutation

► Do I know the modifier Mausm? No!

Compound splitting: Mausmutation

Mausmutation

Compound splitting: Mausmutation

Maus|mutation

- ► The prototype with the highest score will be our split!
- ► Recurse...

Compound splitting: Plantage

Plantage

► Let's try another example...

Compound splitting: Plantage

<u>Plan</u>tage →

► Do I know the modifier Plan? Yes!

Compound splitting: Plantage

<u>Plan</u>tage →

- ► Do I know the modifier *Plan*? Yes! Prototypes:
 - Feststellung
 - -Wert
 - -Fertiger
 - ...

Compound splitting: Plantage

<u>Plan</u>tage →

► Do I know the modifier *Plan*? Yes! Prototypes:

- -Feststellung
- -Wert
- -Fertiger
- ...

Compound splitting: Plantage

Plantage

► No compound split!

Intrinsic evaluation

- Evaluation on human-annotated dataset (Henrich and Hinrichs, 2011)
 - ~50k compounds
 - only binary splits
- Baseline: Frequency-based Moses compound splitter (Koehn and Knight, 2003)
- ► We evaluate:
 - $\quad \text{Accuracy: } \tfrac{|\text{correct splits}|}{|\text{compounds}|}$
 - Coverage: |compounds.plit|

Intrinsic evaluation

Machine translation experiments (German to English)

	(a) No ((a) No comp. splitting			(b) Rare: $c(w) < 20$			(c) All words		
	Splits	BLEU	MTR	Splits	BLEU	MTR	Splits	BLEU	MTR	
Moses splitter This work	0	17.6	25.5	231 744	17.6 18.2^{AB}	25.7 ^C 26.1 ^{ABC}	244 1616	17.9 17.7	25.8 ^A 26.3 ^A	

^A Stat. sign. against (a) at p < 0.05 ^B Stat. sign. against Moses splitter at same c(w) at p < 0.05 ^C Stat. sign. against best Moses splitter (c) at p < 0.05

Conclusion

- Regularities in semantic vector space can be used to model composition of compounds
- ▶ We can extract modifiers and prototypes (Soricut and Och, 2015)
- Compound splitting algorithm:
 - Good intrinsic performance on gold standard
 - Improved translation quality (standard PBMT setup)
 - Especially adept at splitting highly ambiguous compounds

Morphology and Syntax

Intuition Compounds Particle verbs Method Experiments Conclusion

Joint modeling of morphology and syntax

Paper: A Joint Dependency Model of Morphological and Syntactic Structure for Statistical Machine Translation. *Rico Sennrich and Barry Haddow, EMNLP 2015.*
Ň×

Joint modeling of morphology and syntax

- ► Languages may differ in degree of morphological synthesis
- $\blacktriangleright~$ Syntactic structure in one language $\rightarrow~$ morph. structure in another
- ► Flat structure is not enough!
 - hierarchical structure between morphemes
 - morphosyntactic constraints
 - selectional preferences
- ► Hence: dependency representation of compounds and particle verbs

Compounds

- Head-final in Germanic languages
- Head determines:
 - agreement in phrase
 - selectional preferences for verbs

Compounds

they charge <u>a</u> carry-on bag fee

Agreement: case, number, gender

Particle verbs

function/postion	English/German example
finite (main)	he walks away quickly
	er gent schnell weg
finite (sub.)	[] because he walks away quickly
	[] weil er schnell weggeht
bare infinitive	he can walk away quickly
	er kann schnell weggehen
to/zu-infinitive	he promises to walk away quickly
	er verspricht, schnell wegzugehen

Compound representation

- Split compounds and verbs using finite state morphology + statistical corpus evidence
- Noun and adjective compounds
- Compound representation
 - left-branching
 - head of compound \rightarrow head in dep. tree
 - bigram dependency LM can enforce agreement

Compound representation

Particle verb representation

- Representation abstracts away from surface realization
- Verb particle reordered to be closest pre modifer to verb
- Dependency links allow enforcement of agreement
- Reduces data sparsity

Particle verb representation

Some technicalities

- Dependencies are converted into constituents
- Dependency language model
- The model should
 - produce new words
 - memorize observed words
- $\,
 ightarrow \,$ compounds need to be constituent
- ightarrow some binarization required

Translation

- String-to-tree model
- ► Restoring the target sentence:
 - start from tree output
 - merge compounds: concatenate
 - merge particle verbs: apply simple rules
- ► Experiments English→German
- ► Compounds split if occurred < 5 times

Results

system	newstest2014	newstest2015
baseline	20.7	22.0
+split compounds	21.3	22.4
+particle verbs	21.4	22.8
head binarization	20.9	22.7
+split compounds	22.0	23.4
+particle verbs	22.1	23.8
full system	22.6	24.4

- Head binarization matters
- ► Examples:
 - Staub|sauger|roboter
 - Gravitation|s|wellen
 - NPD|-|Verbot|s|verfahren

Conclusion

- Both particle verb and compound processing helps
- ► But: particle verbs are rarer!

Question: Does the new representation help in agreement?

- ► Test 200 rare compound
- Artificially introduce agreement errors
- ► Original representation accuracy (dep. LM): 55%
- ▶ New representation accuracy (dep. LM): 96.5%

Thank You! Any questions?

References

- Henrich, V. and Hinrichs, E. W. (2011). Determining immediate constituents of compounds in GermaNet. In Proceedings of the International Conference on Recent Advances in Natural Language Processing 2011.
- Koehn, P. and Knight, K. (2003). Empirical methods for compound splitting. In Proceedings of the tenth conference on European chapter of the Association for Computational Linguistics-Volume 1, pages 187–193. Association for Computational Linguistics.
- Soricut, R. and Och, F. (2015). Unsupervised morphology induction using word embeddings. In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 1627–1637, Denver, Colorado. Association for Computational Linguistics.