Machine Translation Evaluation

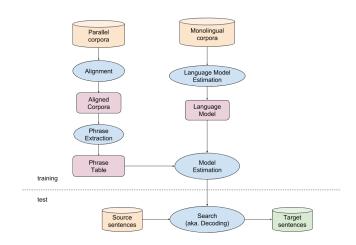
(Based on Miloš Stanojević's slides)

lacer Calixto

Institute for Logic, Language and Computation University of Amsterdam

May 18, 2018

Machine Translation Pipeline



• How bad can translations be?

- How bad can translations be?
 - Grammar errors:

- How bad can translations be?
 - Grammar errors:
 - Wrong noun-verb agreement: e.g. She do not dance.

- How bad can translations be?
 - Grammar errors:
 - Wrong noun-verb agreement: e.g. She do not dance.
 - Spelling mistakes: e.g. The dog is playin with the bal.

- How bad can translations be?
 - Grammar errors:
 - Wrong noun-verb agreement: e.g. She do not dance.
 - Spelling mistakes: e.g. The dog is playin with the bal.
 - Etc.

- How bad can translations be?
 - Grammar errors:
 - Wrong noun-verb agreement: e.g. She do not dance.
 - Spelling mistakes: e.g. The dog is playin with the bal.
 - Etc.
 - Disfluent translations: e.g. She does not like [to] dance.

- How bad can translations be?
 - Grammar errors:
 - Wrong noun-verb agreement: e.g. She do not dance.
 - Spelling mistakes: e.g. The dog is playin with the bal.
 - Etc.
 - Disfluent translations: e.g. She does not like to dance.
 - Etc.

- How bad can translations be?
 - Grammar errors:
 - Wrong noun-verb agreement: e.g. She do not dance.
 - Spelling mistakes: e.g. The dog is playin with the bal.
 - Etc.
 - Disfluent translations: e.g. She does not like [to] dance.
 - Etc.
- What constitutes a good translation?

- How bad can translations be?
 - Grammar errors:
 - Wrong noun-verb agreement: e.g. She do not dance.
 - Spelling mistakes: e.g. The dog is playin with the bal.
 - Etc.
 - Disfluent translations: e.g. She does not like [to] dance.
 - Etc.
- What constitutes a good translation?
 - One that accounts for all the "units of meaning" in the source sentence?

- How bad can translations be?
 - Grammar errors:
 - Wrong noun-verb agreement: e.g. She do not dance.
 - Spelling mistakes: e.g. The dog is playin with the bal.
 - Etc.
 - Disfluent translations: e.g. She does not like [to] dance.
 - Etc.
- What constitutes a good translation?
 - One that accounts for all the "units of meaning" in the source sentence?
 - One that reads fluently in the target language?

- How bad can translations be?
 - Grammar errors:
 - Wrong noun-verb agreement: e.g. She do not dance.
 - Spelling mistakes: e.g. The dog is playin with the bal.
 - Etc.
 - Disfluent translations: e.g. She does not like [to] dance.
 - Etc.
- What constitutes a good translation?
 - One that accounts for all the "units of meaning" in the source sentence?
 - One that reads fluently in the target language?
- What about translating literature, e.g. Alice's Adventures in Wonderland?

- How bad can translations be?
 - Grammar errors:
 - Wrong noun-verb agreement: e.g. She do not dance.
 - Spelling mistakes: e.g. The dog is playin with the bal.
 - Etc.
 - Disfluent translations: e.g. She does not like [to] dance.
 - Etc.
- What constitutes a good translation?
 - One that accounts for all the "units of meaning" in the source sentence?
 - One that reads fluently in the target language?
- What about translating literature, e.g. Alice's Adventures in Wonderland?
- Or a philosophical treatise, e.g. Beyond Good and Evil?

Good Translations - Fluency vs. Adequacy

- Let's simplify the problem:
 - One axis of our evaluation should account for target-language fluency;

Good Translations - Fluency vs. Adequacy

- Let's simplify the problem:
 - One axis of our evaluation should account for target-language fluency;
 - Another axis should account for how **adequate** are the source-sentence "units of meaning" translated into the target language.

Good Translations - Fluency vs. Adequacy

- Let's simplify the problem:
 - One axis of our evaluation should account for target-language fluency;
 - Another axis should account for how adequate are the source-sentence "units of meaning" translated into the target language.
- Examples:
 - The man is playing football (source sentence)
 - La femme joue au football (✓ fluent but ✗ adequate)
 - XLe homme joue Xfootball (X fluent but ✓ adequate)
 - L'homme joue au football (✓ fluent and ✓ adequate)

- 1 Introduction
- 2 Outline
- 3 Motivation
- 4 Word-based Metrics
- **5** Feature-based Metric(s)
- 6 Wrap-up & Conclusions

Why Machine Translation Evaluation?

Why do we need automatic evaluation of MT output?

Why Machine Translation Evaluation?

- Why do we need automatic evaluation of MT output?
 - Rapid system development;
 - Tuning MT systems;
 - · Comparing different systems;

Why Machine Translation Evaluation?

- Why do we need automatic evaluation of MT output?
 - Rapid system development;
 - Tuning MT systems;
 - Comparing different systems;
- Ideally we would like to incorporate **human feedback** too, but they are **too expensive**... \odot

What is a Metric?

 A function that computes the similarity between the output of an MT system (i.e. hypothesis or sys) and one or more human translations (reference translations or ref);

What is a Metric?

- A function that computes the similarity between the output of an MT system (i.e. hypothesis or sys) and one or more human translations (reference translations or ref);
- It can be interpreted in different ways:
 - Overlap between sys and ref: precision, recall...
 - Edit distance: insert, delete, shift;
 - Etc.

What is a Metric?

- A function that computes the similarity between the output of an MT system (i.e. hypothesis or sys) and one or more human translations (reference translations or ref);
- It can be interpreted in different ways:
 - Overlap between sys and ref: precision, recall...
 - Edit distance: insert, delete, shift;
 - Etc.
- Different metrics make different choices;

BLEU (Papineni et al., 2002)

BLEU= BP · exp
$$\left(\sum_{n=1}^{N} w_n \log p_n\right)$$

- Commonly, we set N=4, $w_n=\frac{1}{N}$;
- BP stands for "Brevity Penalty" and is computed by:

$$\mathrm{BP} = \left\{ \begin{array}{ll} 1 & \text{if } c > r \\ e^{(1-r/c)} & \text{if } c \le r \end{array} \right.$$

- c is the length of the candidate translation;
- *r* is the effective reference corpus length.

BLEU (cont.)

BLEU= BP · exp
$$\left(\sum_{n=1}^{N} w_n \log p_n\right)$$

$$BP = \begin{cases} 1 & \text{if } c > r \\ e^{(1-r/c)} & \text{if } c \le r \end{cases}$$

- ref: john plays in the park (length = 5)
- hyp: john is playing in the park (length = 6)
- 1-gram: √john Xis Xplaying √in √the √park
- BP = 1 (c > r)
- For N = 1

 - $w_1 = \frac{1}{1} = 1$ $p_1 = \frac{4}{5}$, therefore BLEU₁ = 1 · exp(1 · log 0.8) = 0.9.

BLEU (cont.)

BLEU= BP · exp
$$\left(\sum_{n=1}^{N} w_n \log p_n\right)$$

$$BP = \begin{cases} 1 & \text{if } c > r \\ e^{(1-r/c)} & \text{if } c < r \end{cases}$$

- ref: john plays in the park (length = 5)
- hyp: john is playing in the park (length = 6)
- 1-gram: ✓john Xis Xplaying ✓in ✓the ✓park
- 2-gram: Xjohn is, Xis playing, Xplaying in, √in the, √the park
- BP = 1 (c > r)
- For N = 2:
 - $w_1 = w_2 \frac{1}{2} = 0.5$
 - $p_1 = \frac{4}{5}$, $p_2 = \frac{2}{4}$, and $BLEU_2 = 1 \cdot exp(\frac{1}{2} \cdot log 0.8 + \frac{1}{2} \cdot log 0.5) = 0.81$.

 Uses alignments between reference and hypothesis to compute scores.

- Uses alignments between reference and hypothesis to compute scores.
- Accounts for different matching criteria:
 - **Exact**: Match words if their surface forms are identical.

- Uses alignments between reference and hypothesis to compute scores.
- Accounts for different matching criteria:
 - Exact: Match words if their surface forms are identical.
 - Stem: Stem words using a language appropriate and match if the stems are identical.

- Uses alignments between reference and hypothesis to compute scores.
- Accounts for different matching criteria:
 - Exact: Match words if their surface forms are identical.
 - Stem: Stem words using a language appropriate and match if the stems are identical.
 - **Synonym**: Match words if they share membership in any synonym set according to the WordNet database.

- Uses alignments between reference and hypothesis to compute scores.
- Accounts for different matching criteria:
 - Exact: Match words if their surface forms are identical.
 - Stem: Stem words using a language appropriate and match if the stems are identical.
 - Synonym: Match words if they share membership in any synonym set according to the WordNet database.
 - **Paraphrase**: Match phrases if they are listed as paraphrases in a language appropriate paraphrase table.

METEOR

$$F_{mean} = \frac{P \cdot R}{\alpha \cdot P + (1 - \alpha) \cdot R}$$

$$Score = (1 - Pen) \cdot F_{mean}$$

- α is a trained parameter (there are many more, but not shown here for brevity);
- P is precision;
- R is recall:
- Pen is a fragmentation penalty.

BEER (Stanojević and Sima'an, 2014)

- Example of a trained metric;
- Developed by a colleague of ours in the ILLC (Miloš Stanojević);
- Core idea: integrate different features in a linear model and train the metric.

BEER

- Assume a linear model with features $\vec{\phi}$ and weight vector \vec{w} :
 - score $(h,r) = \vec{\boldsymbol{w}} \cdot \vec{\phi}(h,r)$
- There are human judgements that say that a translation h_{good} is better than a translation h_{had}.

$$\begin{aligned} & \operatorname{score}(h_{\operatorname{good}},r) > \operatorname{score}(h_{\operatorname{bad}},r) & \iff \\ & \vec{\boldsymbol{w}} \cdot \vec{\phi}_{\operatorname{good}} > \vec{\boldsymbol{w}} \cdot \vec{\phi}_{\operatorname{bad}} & \iff \\ & \vec{\boldsymbol{w}} \cdot \vec{\phi}_{\operatorname{good}} - \vec{\boldsymbol{w}} \cdot \vec{\phi}_{\operatorname{bad}} > 0 & \iff \\ & \vec{\boldsymbol{w}} (\vec{\phi}_{\operatorname{good}} - \vec{\phi}_{\operatorname{bad}}) > 0 & \\ & \vec{\boldsymbol{w}} (\vec{\phi}_{\operatorname{bad}} - \vec{\phi}_{\operatorname{good}}) < 0 & \end{aligned}$$

• This transforms the task from a ranking task into a binary classification task (positive vs. negative).

WMT Evaluation Shared Task [1]

http://www.statmt.org/wmt16/pdf/W16-2302.pdf

	cs-en		de-en		fi-en		ro-en		ru-en		tr-en	
Human	RR	DA										
Systems	6	6	10	10	9	9	7	7	10	10	8	8
MPEDA	.996	.993	.956	.937	.967	.976	.938	.932	.986	.929	.972	.982
UoW.REVAL	.993	.986	.949	.985	.958	.970	.919	.957	.990	.976	.977	.958
BEER	.996	.990	.949	.879	.964	.972	.908	.852	.986	.901	.981	.982
CHRF1	.993	.986	.934	.868	.974	.980	.903	.865	.984	.898	.973	.961
CHRF2	.992	.989	.952	.893	.957	.967	.913	.886	.985	.918	.937	.933
CHRF3	.991	.989	.958	.902	.946	.958	.915	.892	.981	.923	.918	.917
CHARACTER	.997	.995	.985	.929	.921	.927	.970	.883	.955	.930	.799	.827
MTEVALNIST	.988	.978	.887	.801	.924	.929	.834	.807	.966	.854	.952	.938
MTEVALBLEU	.992	.989	.905	.808	.858	.864	.899	.840	.962	.837	.899	.895
MOSESCDER	.995	.988	.927	.827	.846	.860	.925	.800	.968	.855	.836	.826
MOSESTER	.983	.969	.926	.834	.852	.846	.900	.793	.962	.847	.805	.788
wordF2	.991	.985	.897	.786	.790	.806	.905	.815	.955	.831	.807	.787
wordF3	.991	.985	.898	.787	.786	.803	.909	.818	.955	.833	.803	.786
WORDF1	.992	.984	.894	.780	.796	.808	.890	.804	.954	.825	.806	.776
MOSESPER	.981	.970	.843	.730	.770	.767	.791	.748	.974	.887	.947	.940
MOSESBLEU	.991	.983	.880	.757	.752	.759	.878	.793	.950	.817	.765	.739
	.982	.967	.926	.822	.773	.768	.895	.762	.958	.837	.680	.651

Table 4: Absolute Pearson correlation of to-English system-level metric scores with human assessment variants: RR = standard WMT relative ranking; DA = direct assessment of translation adequacy.

WMT Evaluation Shared Task [2]

http://www.statmt.org/wmt16/pdf/W16-2302.pdf

Human	en-cs		en-de		en-fi		en-ro		en-ru		en-tr	
	RR	DA	RR	DA								
Systems	10		15		13		12		12	12	8	
CHARACTER	.947	-	.915	-	.933	-	.959	-	.954	.966	.930	-
BEER	.973	-	.732	-	.940	-	.947	-	.906	.922	.956	-
CHRF2	.954	-	.725	-	.974	-	.828	-	.930	.955	.940	-
CHRF3	.954	-	.745	-	.974	-	.818	-	.936	.960	.916	-
MOSESCDER	.968	-	.779	-	.910	-	.952	-	.874	.874	.791	-
CHRF1	.955	-	.645	-	.931	-	.858	-	.901	.928	.938	-
WORDF3	.964	-	.768	-	.901	-	.931	-	.836	.840	.714	-
wordF2	.964	-	.766	-	.899	-	.933	-	.836	.840	.715	-
wordF1	.964	-	.756	-	.888	-	.937	-	.836	.839	.711	-
MPEDA	.964	-	.684	-	.944	-	.786	-	.856	.866	.860	-
MOSESBLEU	.968	-	.784	-	.857	-	.944	-	.820	.820	.693	-
MTEVALBLEU	.968	-	.752	-	.868	-	.897	-	.835	.838	.745	_
MTEVALNIST	.975	-	.625	-	.886	-	.882	-	.890	.897	.788	-
MOSESTER	.940	-	.742	-	.863	-	.906	-	.882	.879	.644	-
MOSESWER	.935	-	.771	-	.855	-	.912	-	.882	.876	.570	-
MOSESPER	.974	-	.681	-	.700	-	.944	-	.857	.854	.641	-
CHRF3.2REF	-	-	-	-	.973	-	-	-	-	-	-	-
CHRF2.2REF	-	-	-	-	.970	-	-	-	-	-	-	-
CHRF1.2REF	-	-	-	-	.923	-	-	-	-	-	-	-
WORDF3.2REF	-	-	-	-	.890	-	-	-	-	-	-	-
WORDF2.2REF	-	-	-	-	.887	-	-	-	-	-	-	-
WORDF1.2REF	-	-	-	-	.876	-	-	-	-	-	-	-

Table 5: Absolute Pearson correlation of out-of-English system-level metric scores with human assessment variants: RR = standard WMT relative ranking; DA = direct assessment of translation adequacy.

Conclusions

- MT evaluation is important for system tuning and assessing how good a system is;
- Different MT metrics: BLEU, METEOR, BEER.

Future work:

- Quality estimation (evaluation of MT output without references);
- Statistical significance testing;
- Corpus- versus sentence-level metrics;
- Hopefully we can talk about them some other time... \bigcirc

References I

- Denkowski, M. and Lavie, A. (2014). Meteor universal: Language specific translation evaluation for any target language. In *Proceedings of the EACL 2014 Workshop on Statistical Machine Translation*.
- Lavie, A. and Agarwal, A. (2007). Meteor: An automatic metric for mt evaluation with high levels of correlation with human judgments. In *Proceedings of the Second Workshop on Statistical Machine Translation*, StatMT '07, pages 228–231. Association for Computational Linguistics.
- Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: A method for automatic evaluation of machine translation. In *Proceedings of the 40th Annual Meeting on Association for Computational Linguistics*, ACL '02, pages 311–318.
- Stanojević, M. and Sima'an, K. (2014). Fitting sentence level translation evaluation with many dense features. In *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pages 202–206, Doha, Qatar. Association for Computational Linguistics.