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Iacer Calixto

Institute for Logic, Language and Computation
University of Amsterdam

May 18, 2018

Iacer Calixto (ILLC, UvA) Machine Translation Evaluation May 18, 2018 1 / 18



Introduction

Machine Translation Pipeline

Iacer Calixto (ILLC, UvA) Machine Translation Evaluation May 18, 2018 2 / 18



Introduction

“Good” versus “Bad” Translations

• How bad can translations be?

• Grammar errors:

• Wrong noun-verb agreement: e.g. She do not dance.
• Spelling mistakes: e.g. The dog is playin with the bal.
• Etc.

• Disfluent translations: e.g. She does not like [to] dance.
• Etc.

• What constitutes a good translation?

• One that accounts for all the “units of meaning” in the source
sentence?

• One that reads fluently in the target language?

• What about translating literature, e.g. Alice’s Adventures in
Wonderland?

• Or a philosophical treatise, e.g. Beyond Good and Evil?
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Introduction

Good Translations - Fluency vs. Adequacy

• Let’s simplify the problem:
• One axis of our evaluation should account for target-language

fluency;

• Another axis should account for how adequate are the source-sentence
“units of meaning” translated into the target language.

• Examples:

• The man is playing football (source sentence)
• La femme joue au football (3 fluent but 7 adequate)
• 7Le homme joue 7football (7 fluent but 3 adequate)
• L’homme joue au football (3 fluent and 3 adequate)
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Motivation

Why Machine Translation Evaluation?

• Why do we need automatic evaluation of MT output?

• Rapid system development;
• Tuning MT systems;
• Comparing different systems;

• Ideally we would like to incorporate human feedback too, but they
are too expensive... /
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Motivation

What is a Metric?

• A function that computes the similarity between the output of an
MT system (i.e. hypothesis or sys) and one or more human
translations (reference translations or ref);

• It can be interpreted in different ways:

• Overlap between sys and ref: precision, recall...
• Edit distance: insert, delete, shift;
• Etc.

• Different metrics make different choices;
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Word-based Metrics

BLEU (Papineni et al., 2002)

• Commonly, we set N = 4, wn = 1
N ;

• BP stands for “Brevity Penalty” and is computed by:

• c is the length of the candidate translation;

• r is the effective reference corpus length.
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Word-based Metrics

BLEU (cont.)

• ref: john plays in the park (length = 5)

• hyp: john is playing in the park (length = 6)

• 1-gram: 3john 7is 7playing 3in 3the 3park

• BP = 1 (c > r)

• For N = 1:
• w1 = 1

1 = 1
• p1 = 4

5 , therefore BLEU1 = 1 · exp(1 · log 0.8) = 0.9.
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Word-based Metrics

BLEU (cont.)

• ref: john plays in the park (length = 5)

• hyp: john is playing in the park (length = 6)

• 1-gram: 3john 7is 7playing 3in 3the 3park

• 2-gram: 7john is, 7is playing, 7playing in, 3in the, 3the park

• BP = 1 (c > r)

• For N = 2:
• w1 = w2

1
2 = 0.5

• p1 = 4
5 , p2 = 2

4 , and BLEU2 = 1 · exp( 1
2 · log 0.8 + 1

2 · log 0.5) = 0.81.
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Word-based Metrics

METEOR (Lavie and Agarwal, 2007; Denkowski and Lavie, 2014)

• Uses alignments between reference and hypothesis to compute
scores.

• Accounts for different matching criteria:

• Exact: Match words if their surface forms are identical.
• Stem: Stem words using a language appropriate and match if the

stems are identical.
• Synonym: Match words if they share membership in any synonym set

according to the WordNet database.
• Paraphrase: Match phrases if they are listed as paraphrases in a

language appropriate paraphrase table.
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Word-based Metrics

METEOR

• α is a trained parameter (there are many more, but not shown here
for brevity);

• P is precision;

• R is recall;

• Pen is a fragmentation penalty.
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Feature-based Metric(s)

BEER (Stanojević and Sima’an, 2014)

• Example of a trained metric;

• Developed by a colleague of ours in the ILLC (Miloš Stanojević);

• Core idea: integrate different features in a linear model and train
the metric.
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Feature-based Metric(s)

BEER
• Assume a linear model with features ~φ and weight vector ~w :

• score(h,r) = ~w · ~φ(h,r)

• There are human judgements that say that a translation hgood is
better than a translation hbad.

score(hgood, r) > score(hbad, r) ⇐⇒
~w · ~φgood > ~w · ~φbad ⇐⇒

~w · ~φgood − ~w · ~φbad > 0 ⇐⇒
~w(~φgood − ~φbad) > 0

~w(~φbad − ~φgood) < 0

• This transforms the task from a ranking task into a binary
classification task (positive vs. negative).
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Wrap-up & Conclusions

WMT Evaluation Shared Task [1]
http://www.statmt.org/wmt16/pdf/W16-2302.pdf
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Wrap-up & Conclusions

Conclusions

• MT evaluation is important for system tuning and assessing how
good a system is;

• Different MT metrics: BLEU, METEOR, BEER.

Future work:
• Quality estimation (evaluation of MT output without references);

• Statistical significance testing;

• Corpus- versus sentence-level metrics;

• Hopefully we can talk about them some other time... ,
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Wrap-up & Conclusions
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