Neural Language Models

(based on Joost Bastings's slides)

lacer Calixto

Institute for Logic, Language and Computation
University of Amsterdam

May 18, 2018

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 1/39

Recap: ANNs and RNNs

Artificial Neural Networks [1]

Who
L o
.A
X h y
Input Hidden Qutput
layer layer layer

Let x e R* h ¢ R* y € R?.

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 2 /39

Artificial Neural Networks [2]

W — W,

ih

2@~
"M"%g
L o n
X h y
Input Hidden Output
layer layer layer

Let x e R*, he R* y € R?,
Wi, € R*** and by, € R4, and
W, € R**? and by, € R

h = f(x" Wi, + b,
y = g(h" Wi, + by,).

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 3 /39

Recap: ANNs and RNNs

Recurrent Neural Networks|1]

Yy

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 4 /39

Recap: ANNs and RNNs

Recurrent Neural Networks|2]

Yi

h; = f(Wipx; + Wiphe_1 + bjp),
Yt = g(Whoht + bho)-

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 5 /39

Recap: ANNs and RNNs

Recurrent Neural Networks|3]

e For a sequence of input vectors x = {xy, x2, x3}, an RNN will
compute a sequence of hidden states H = {hy, hy, h3}, and
optionally a sequence of output vectors y = {yi1,y2,y3}.

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 6 /39

Introduction

@ Recap: ANNs and RNNs
@ Introduction

© Language Models

O n-gram Language Models
@ Log-linear Language Models

@ Neural Language Models

@ Teaser ©

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 7 /39

Introduction

you know nothing, jon ______

lacer Calixto (ILLC, UvA) Neural Language Models

Introduction

ground control to major ______

lacer Calixto (ILLC, UvA) Neural Language Models

Introduction

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 10 / 39

Introduction

the quick ______

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 11 /39

Introduction

the quick brown ______

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 12 / 39

Introduction

the quick brown fox ______

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 13 /39

Introduction

the quick brown fox jumps ______

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 14 / 39

Introduction

the quick brown fox jumps over ______

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 15 / 39

Introduction

the quick brown fox jumps over the ______

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 16 / 39

Introduction

the quick brown fox jumps over the lazy ______

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 17 / 39

Introduction

the quick brown jumps over the lazy dog

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 18 / 39

Language Models

Definition

¢ Language models give us the probability of a sentence;

e At any time step, they assign a probability to the next word.

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 19 / 39

Applications

o Very useful in a plethora of different tasks:
Speech recognition;

Spelling correction;

Machine translation;

etc.

e LMs are useful in almost any tasks that deals with generating
language.

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 20 / 39

Different “Types" of Language Models

e N-gram based LMs;
e Log-linear LMs;
e Neural LMs.

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 21 /39

N-gram LM[1]

X is a sequence of words

x = {x1, X2, X3, Xa, X5 }

= {you, know, nothing, jon, snow}

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 22 /39

n-gram Language Models

N-gram LM[2]

To compute the probability of that sentence, we first apply the chain rule:

P(x, X, xn) = [[P(xilx, %2, xi—1)
i

P(x)

lacer Calixto (ILLC, UvA)

=P("you know nothing jon snow")
=P("you")-
P("know" | "you")-

(

(

(

P("nothing” | "you know")-

iy,

jon" | "you know nothing”)-

P("snow” | "you know nothing jon").

Neural Language Models May 18, 2018 23 /39

N-gram LM[3]

We then make a Markov assumption of conditional independence:

P(Xl,XQ, e ,Xn) = H P(X,'|X1,X2,X,'_1)

= H P(X,'|X,',1)

P(x) = P("you know nothing jon snow")
= P("you know") - P("know nothing") - P(" nothing jon") - P("jon sno\

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 24 / 39

N-gram LM[4]

If we didn't observe a certain bigram, then p(x;|x;_1) will be 0.
This makes the probability of the sentence also 0!
MLE:

count(xj_1, x;)

P dxi 1) =

MLE(X"XI 1) COUHt(X,'_]_)
Laplace / add-one smoothing :

count(xj_1,x;)+1

count(xj_1)+V

Padd1(xi|xi—1) =

This doesn't work too well for language modelling.
However, there are more advanced smoothing that could be applied e.g.
Kneser-Ney (Kneser and Ney, 1995).

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 25 /39

Log-linear LM

expw - ¢(x,)
>oyev, P w - o(x,y)

Pu(Y =yl X=x)=

Y is the next word and V/, is the vocabulary;
X is the history;

¢ is a feature function that returns an n-dimensional vector;

w are the model parameters.

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 26 / 39

Why use a log-linear LM?

With features of words and histories we can share statistical weight;

With n-grams, there is no sharing at all!

We also get smoothing for free; ®

We can add arbitrary features!
We use Stochastic Gradient Descent (SGD) to optimise.

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 27 / 39

Which features to use?

e n-gram features: “X;, ;| — the and X, — puppy”;

e “gappy” n-gram features: “X; » — the and X; — puppy”;
e spelling features: “X;'s first letter is capitalised”;

e class features: “X;'s belongs to class ABC";

o gazetteer features: “X; is a place name”;

e etc.

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 28 / 39

Neural Language Models

Neural Language Models - Motivation

e n-gram language models have proven to be effective in various tasks v/

log-linear models allow us to share weights through features v

e maybe our history is still too limited, e.g. n — 1 words X

we need to find useful features X

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 29 / 39

Neural Language Models

Feed-forward Neural Networks

With neural networks we can exploit distributed representations
to allow for statistical weight sharing.

How does it work:

@ cach word is mapped to an embedding: an m-dimensional feature
vector;

@® a probability function over word sequences is expressed in terms of
these vectors;

© we jointly learn the feature vectors and the parameters of the
probability function.

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 30/ 39

How/Why does it work?

v/ Similar words are expected to have similar feature vectors:
(dog,cat), (running,walking), (bedroom,room)

With this, probability mass is naturally transferred from (1) to (2):
The cat is walking in the bedroom.
The dog is running in the room.
And many other similar sentences...

Take-away message:

e The presence of only one sentence in the training data will increase
the probability of a combinatorial number of “neighbours” in sentence
space.

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 31/39

Neural Language Models

Feed-forward LM

jon
softmax(y)

you know nothing

Eyom EknOW7 Enothing € RlOO’
X = [Eyou; Eknow; Enothing] S R300’
y=W; tanh(W1X + bl) + Whx + by.

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 32 /39

Neural Language Models

Why does it work?

jon

softmax(y)

you know nothing

e The non-linear activation functions perform feature combinations that
a linear model cannot do;

e End-to-end training on next word prediction.

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 33 /39

Neural Language Models

Continuation...

jon

softmax(y)

you know nothing

e We now have much better generalisation, but still a limited
history /context.

o Recurrent neural networks have unlimited history! ©®

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 34 /39

Neural Language Models

Recurrent Neural Network Language Model

argmax softmax (y,) = E[y]
(000 000000 sotmaxy)

Yy

h; = §(Wipx; + Whphe_1 + bip,),
Yt = g(Whoht + bho)-
lacer Calixto (ILLC, UvA)

Neural Language Models May 18, 2018 35/ 39

Neural Language Models

Recurrent Neural Network Language Model

know - nothing jon snow

argmax softmax(y,) [ooooooo:o.] [ooooooo;l] [ooooooio} (ce0vssns)

v(000) C ‘o o) 000 (000

" B8 —ps @8 —@s

you * know * nothing

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 36 / 39

Neural Language Models

Recurrent Neural Network Language Model

Final notes on neural LMs:

e RNNs suffer from the vanishing gradient problem;
e Many improvements have been proposed insofar:

e STM-based LMs;
e character-based LMs,
e etc.

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 37 /39

Teaser — Encoder-Decoder

(@ douo} [oveot o] ifienomf] (00 o] an

(000 (000 (000 [o.oo] (000

you know nothing jon snow

References

Bengio et al. (2003). A neural probabilistic language model. Journal of Machine
Learning Research. 3 Feb (2003):1137-1155.

Cho et al. (2014). Learning phrase representations using RNN encoder-decoder
for statistical machine translation. arXiv preprint arxiv:1406.1078 (2014).

Kneser and Ney (1995). Improved Backing-off for N-gram Language Modeling.
ICASSP, IEEE International Conference on Acoustics, Speech and Signal
Processing - Proceedings. 1. 181-184 vol.1. 10.1109/ICASSP.1995.479394.

Mikolov et al., (2010). Recurrent Neural Network-Based Language Model.
Interspeech, vol.2, 2010.

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 39 /39

	Recap: ANNs and RNNs
	Introduction
	Language Models
	n-gram Language Models
	Log-linear Language Models
	Neural Language Models
	Teaser 44

