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Recap: ANNs and RNNs

Artificial Neural Networks [1]
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Let x e R* h ¢ R* y € R?.
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Artificial Neural Networks [2]
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Let x e R*, he R* y € R?,
Wi, € R*** and by, € R4, and
W, € R**? and by, € R

h = f(x" Wi, + b,
y = g(h" Wi, + by,).
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Recap: ANNs and RNNs

Recurrent Neural Networks|1]

Yy
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Recap: ANNs and RNNs

Recurrent Neural Networks|2]

Yi

h; = f(Wipx; + Wiphe_1 + bjp),
Yt = g( Whoht + bho)-
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Recap: ANNs and RNNs

Recurrent Neural Networks|3]

e For a sequence of input vectors x = {xy, x2, x3}, an RNN will
compute a sequence of hidden states H = {hy, hy, h3}, and
optionally a sequence of output vectors y = {yi1,y2,y3}.
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Introduction

you know nothing, jon ______
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Introduction

ground control to major ______
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Introduction
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Introduction

the quick ______
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Introduction

the quick brown ______
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Introduction

the quick brown fox ______
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Introduction

the quick brown fox jumps ______
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Introduction

the quick brown fox jumps over ______
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Introduction

the quick brown fox jumps over the ______
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Introduction

the quick brown fox jumps over the lazy ______
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Introduction

the quick brown jumps over the lazy dog
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Language Models

Definition

¢ Language models give us the probability of a sentence;

e At any time step, they assign a probability to the next word.
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Applications

o Very useful in a plethora of different tasks:
Speech recognition;

Spelling correction;

Machine translation;

etc.

e LMs are useful in almost any tasks that deals with generating
language.
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Different “Types" of Language Models

e N-gram based LMs;
e Log-linear LMs;
e Neural LMs.
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N-gram LM[1]

X is a sequence of words

x = {x1, X2, X3, Xa, X5 }

= {you, know, nothing, jon, snow}
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n-gram Language Models

N-gram LM[2]

To compute the probability of that sentence, we first apply the chain rule:

P(x, X,  xn) = [ [ P(xilx, %2, xi—1)
i

P(x)

lacer Calixto (ILLC, UvA)

=P("you know nothing jon snow")
=P("you")-
P("know" | "you")-

(

(

(

P("nothing” | "you know")-

iy,

jon" | "you know nothing”)-

P("snow” | "you know nothing jon").
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N-gram LM[3]

We then make a Markov assumption of conditional independence:

P(Xl,XQ, e ,Xn) = H P(X,'|X1,X2,X,'_1)

= H P(X,'|X,',1)

P(x) = P("you know nothing jon snow")
= P("you know") - P("know nothing") - P(" nothing jon") - P("jon sno\
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N-gram LM[4]

If we didn't observe a certain bigram, then p(x;|x;_1) will be 0.
This makes the probability of the sentence also 0!
MLE:

count(xj_1, x;)

P dxi 1) =

MLE(X"XI 1) COUHt(X,'_]_)
Laplace / add-one smoothing :

count(xj_1,x;)+1

count(xj_1)+V

Padd1(xi|xi—1) =

This doesn't work too well for language modelling.
However, there are more advanced smoothing that could be applied e.g.
Kneser-Ney (Kneser and Ney, 1995).
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Log-linear LM

expw - ¢(x, )
>oyev, P w - o(x,y)

Pu(Y =yl X=x)=

Y is the next word and V/, is the vocabulary;
X is the history;

¢ is a feature function that returns an n-dimensional vector;

w are the model parameters.
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Why use a log-linear LM?

With features of words and histories we can share statistical weight;

With n-grams, there is no sharing at all!

We also get smoothing for free; ®

We can add arbitrary features!
We use Stochastic Gradient Descent (SGD) to optimise.
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Which features to use?

e n-gram features: “X;, ;| — the and X, — puppy”;

e “gappy” n-gram features: “X; » — the and X; — puppy”;
e spelling features: “X;'s first letter is capitalised”;

e class features: “X;'s belongs to class ABC";

o gazetteer features: “X; is a place name”;

e etc.
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Neural Language Models

Neural Language Models - Motivation

e n-gram language models have proven to be effective in various tasks v/

log-linear models allow us to share weights through features v

e maybe our history is still too limited, e.g. n — 1 words X

we need to find useful features X
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Neural Language Models

Feed-forward Neural Networks

With neural networks we can exploit distributed representations
to allow for statistical weight sharing.

How does it work:

@ cach word is mapped to an embedding: an m-dimensional feature
vector;

@® a probability function over word sequences is expressed in terms of
these vectors;

© we jointly learn the feature vectors and the parameters of the
probability function.
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How/Why does it work?

v/ Similar words are expected to have similar feature vectors:
(dog,cat), (running,walking), (bedroom,room)

With this, probability mass is naturally transferred from (1) to (2):
The cat is walking in the bedroom.
The dog is running in the room.
And many other similar sentences...

Take-away message:

e The presence of only one sentence in the training data will increase
the probability of a combinatorial number of “neighbours” in sentence
space.
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Neural Language Models

Feed-forward LM

jon
softmax(y)

you know nothing

Eyom EknOW7 Enothing € RlOO’
X = [Eyou; Eknow; Enothing] S R300’
y=W; tanh(W1X + bl) + Whx + by.

lacer Calixto (ILLC, UvA) Neural Language Models May 18, 2018 32 /39



Neural Language Models

Why does it work?

jon

softmax(y)

you know nothing

e The non-linear activation functions perform feature combinations that
a linear model cannot do;

e End-to-end training on next word prediction.
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Neural Language Models

Continuation...

jon

softmax(y)

you know nothing

e We now have much better generalisation, but still a limited
history /context.

o Recurrent neural networks have unlimited history! ©®
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Neural Language Models

Recurrent Neural Network Language Model

argmax softmax (y,) = E[y]
(000 000000 sotmaxy)

Yy

h; = §(Wipx; + Whphe_1 + bip,),
Yt = g( Whoht + bho)-
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Neural Language Models

Recurrent Neural Network Language Model

know - nothing jon snow

argmax softmax(y,) [ooooooo:o.] [ooooooo;l] [ooooooio} (ce0vssns)

v(000) C ‘o o) 000 (000
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you * know * nothing
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Neural Language Models

Recurrent Neural Network Language Model

Final notes on neural LMs:

e RNNs suffer from the vanishing gradient problem;
e Many improvements have been proposed insofar:

e STM-based LMs;
e character-based LMs,
e etc.
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Teaser — Encoder-Decoder
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