Linguistically-Informed Neural Networks for Natural Language Processing

Joost Bastings

Institute for Logic, Language and Computation (ILLC), University of Amsterdam *bastings.github.io*

NLP2 20-5-2019

Outline

- 1. Linguistic structures
- 2. Conditioning on graphs
 - a. Graph Convolutional Networks: neural message passing
 - b. **Applications in NLP:** using GCNs for encoding prior knowledge and inference
- 3. Inducing graphs
 - a. Inducing graphs for Neural Machine Translation
 - b. Transformer
 - i. Self-Attention: fully-connected graphs
 - ii. Linguistically-Informed Self-Attention
 - iii. BERT

In NLP is natural to represent linguistic/prior knowledge as graphs

Encoder-Decoder models are agnostic to this

Convolution vs Graph Convolution

2D convolution e.g. image filter

graph convolution e.g. social network

Graph Convolutional Networks: message passing

Undirected graph

Update of red node

$$\mathbf{h}_{i} = \text{ReLU}\left(\mathbf{W'h}_{i} + \sum_{j \in neighbors(i)} \mathbf{Wh}_{j}\right)$$

GCNs: multilayer convolution operation

GCNs: multilayer convolution operation

Implementation note

$$\hat{A} = A + I$$

 $H^{I+1} = ReLU(\hat{A}H^{I}W^{I})$

Syntactic GCNs: directionality and labels

Syntactic GCNs: edge-wise gating

$$g_{u,v} = \sigma \left(\mathbf{h}_u \cdot \hat{\mathbf{w}}_{\operatorname{dir}(u,v)} + \hat{b}_{\operatorname{lab}(u,v)} \right)$$
$$\mathbf{h}_v = \operatorname{ReLU} \left(\sum_{u \in \mathcal{N}(v)} g_{u,v} \left(W_{\operatorname{dir}(u,v)} \, \mathbf{h}_u + \mathbf{b}_{\operatorname{lab}(u,v)} \right) \right)$$

Conditioning on graphs: Syntax-aware Semantic Role Labeling

Semantic Role Labeling: "Who did what to whom?"

Example goal: identify a **stock purchase** event by **Snow Ltd.**

Many different surface forms!

- Snow Ltd. bought the stock
- They sold the stock to Snow Ltd.
- The stock was bought by Snow Ltd.
- The purchase of the stock by Snow Ltd.
- The stock purchase by Snow Ltd. ...

Semantic roles are **abstract models** of the role an argument plays in the event described by the predicate

Roles can be predicate-specific (A0, A1 are usually *agent* and *patient*)

SRL is the task of assigning semantic role labels to the constituents of a sentence

Syntax/semantics interaction

Some syntactic dependencies are **mirrored** in the semantic graph

Syntax/semantics interaction

Some syntactic dependencies are **mirrored** in the semantic graph

... but not all of them – the syntax-semantics is interface is far from trivial

SRL Results (English)

SRL Results (Chinese)

Conditioning on graphs: Linguistically-informed Neural Machine Translation

Motivation

State-of-the-art NMT systems **lack** any explicit modeling of **syntax**.

They fully rely on an LSTM (or self-attention) to capture syntactic phenomena.

We can use GCNs to condition on syntax and/or semantics

Graph Convolutional Encoders for NMT

GCNs for NMT

GCNs for NMT

GCNs for NMT

Artificial reordering experiment

Random sequences from 26 types

Each token is linked to its predecessor

Sequences are randomly permuted

Each token is also linked to a **random** token with a "fake edge" using a different label set

A BiRNN+GCN model is able to learn how to put the permuted sequences **back into order**.

Real edges are distinguished from fake edges.

Machine Translation experiments

		Train	Validation newstest2015	Test newstest2016
English-German	NCv11	227 k	2169	2999
	WMT'16	4.5 M		
English-Czech	NCv11	181 k	2656	2999

We parse English source sentences using Google's SyntaxNet

BPE on target side (8k merges, 16k for WMT'16)

Embeddings: 256 units, GRUs/CNNs: 512 units (800 for WMT'16)
Three baselines

Results English-German (BLEU)

Results English-Czech (BLEU)

	English-	German	English	h-Czech			
	BLEU ₁	BLEU ₄	BLEU ₁	BLEU ₄			
BiRNN	44.2	14.1	37.8	8.9			
+ GCN 1L	45.0	14.1	38.3	9.6			
+ GCN 2L	46.3	14.8	39.6	9.9			

Effect of sentence length

In principle we can condition on any kind of graph-based linguistic structure:

Semantic Role Labels

Co-reference chains

AMR semantic graphs

NMT with Syntax and Semantics

We can condition on *both* syntax and semantics:

- Dependency graph
- Semantic role structures

	BiRNN	CNN
Baseline (Bastings et al., 2017)	14.9	12.6
+Sem	15.6	13.4
+Syn (Bastings et al., 2017)	16.1	13.7
+Syn + Sem	15.8	14.3

Table 1: Test BLEU, En–De, News Commentary.

T			N T	
- H	41	R.		
_		IN.	N 1	

Baseline (Bastings et al., 2017)	23.3
+Sem	24.5
+Syn (Bastings et al., 2017)	23.9
+Syn + Sem	24.9

Table 2: Test BLEU, En–De, full WMT16.

Semantics can help to get the right translation

BiRNN John verkaufte das Auto nach Mark.

Sem John verkaufte das Auto an Mark.

BiRNN Der Junge zu Fuß die staubige Straße ist ein Bier trinken .Sem Der Junge , der die staubige Straße hinunter geht , trinkt ein Bier .

BiRNNDer Junge auf einer Bank im Park spielt Schach .SemDer Junge sitzt auf einer Bank im Park Schach .

Inducing graphs

Inducing graphs

Instead of conditioning on a graph, we can try to **induce** one

The idea is the following:

- 1. **Predict** the graph for a sentence
- 2. Process that sentence **using** the predicted graph, instead of conditioning on an externally provided graph

There is lots of related work here on inducing **trees**, usually with natural language inference (NLI) as a downstream task.

See e.g. Williams et al. "Do latent tree learning models identify meaningful structure in sentences?." TACL, 2018.

Inducing graphs with Neural Machine Translation

We define a deep generative model with:

1. a graph component

samples graph a conditioned on x

2. a **translation component** given x and a, predicts translation y

Graph component

Samples for each source position i an m-dimensional probability vector A_i:

 $A_{i} \mid x_{1..m} \text{ ~ Concrete}(\tau, \lambda_{i})$

We interpret Ai as a head distribution

- a_{ik} is the relative strength of the edge $x_i \rightarrow x_k$
- 'Head potentials' λ_i are computed with self-attention

Self-attention

Translation component

Attentive encoder-decoder that incorporates graph A = $a_{m.1}$ using graph convolution

 $S = encode(x_1, ..., x_m)$

 $GCN(S, A) = ReLU(ASW_{IN} + SW_{LOOP} + b)$

We then sample target words one step a a time:

$$Y_{j}|X_{1}^{m}, a_{1}^{m}, y_{< j} \sim \mathsf{Cat}(\pi_{j})$$
$$\pi_{j} = f_{\theta}(X_{1}^{m}, a_{1}^{m}, y_{< j})$$

Objective

We optimize the following objective:

$$\log p(y | x) \ge \mathbb{E} \left[\log p(y | x, a) \right]$$

$$\approx \log p(y | x, a)$$

$$a \sim p(a | x_1^m)$$

Experiments

German-English (IWSLT14) and Japanese-English (ASPEC)

	Train	Dev	Test	Vocabulary
De-En	153K	7282	6750	32010/22823
Ja-En	2M	1790	1812	16384 (SPM)

Results

		IWS	LT14	WAT17				
	Encoder	De-En	En-De	JA-EN	En-Ja			
Ext. baseline	RNN	27.6	_	_	28.5			
Baseline Baseline Baseline	Emb. CNN RNN	22.7 23.6 27.6	17.9 19.1 22.4	18.1 23.0 26.0	18.1 24.6 28.7			
Latent Graph Latent Graph Latent Graph	Emb. CNN RNN	24.0 24.6 27.2	18.7 20.3 22.4	23.2 24.6 26.0	24.3 26.7 29.1			

	Mean he	Mean e	NTROPY	
Encoder	JA-EN	En-Ja	JA-EN	En-Ja
Emb.	$4.0{\scriptstyle~\pm6.9}$	3.8 ±5.6	$0.49{\scriptstyle~\pm 0.18}$	0.42 ±0.18
CNN	6.1 ± 6.5	6.7 ±7.1	1.21 ± 0.28	$1.47_{\pm 0.30}$
RNN	$4.3{\scriptstyle~\pm 6.5}$	$2.0{\scriptstyle~\pm 5.4}$	$0.51 {\scriptstyle \pm 0.20}$	$0.00{\scriptstyle~\pm 0.01}$

The mean **head distance** shows that the graphs may capture **non-local** dependencies

The mean entropy shows that the graphs have a high degree of sparsity

Examples

(a) En-Ja Emb

Further readings

Not a deep generative model, but with restrictions on the induced graph:

Tran & Bisk. Inducing Grammars with and for Neural Machine Translation. ACL NMT workshop 2018

Transformer (Vaswani et al., 2017)

It	เร	Ē	this	spirit	that	g	majority	of	American	governments	have	passed	new	laws	since	2009	making	the	registration	or	voting	process	more	difficult	<eos></eos>	<pad></pad>	<pad></pad>	<pad></pad>	<pad></pad>	<pad></pad>	<pre>cpad></pre>
It	<u>s</u>	<u> </u>	this	spirit	that	ŋ	majority	of	American	governments	have	passed	new	laws	since	2009	making	the	registration	or	voting	process	more	difficult	<eos></eos>	<pre><pre>cpad></pre></pre>	<pre><pre>cpad></pre></pre>	<pre><pre>cpad></pre></pre>	<pre><pre>cpad></pre></pre>	<pre>cpad></pre>	<pre><pre>pad></pre></pre>

61

Transformer (Vaswani et al., 2017)

Start with input sequence $w_1, w_2, ..., w_n$

Map to sequence of vectors $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n$ each $\mathbf{x}_i \in \mathbb{R}^d$

Stack the vectors to make matrix $Q \in \mathbb{R}^{n \times d}$

Define the parameters of the transformation:

 $A \in \mathbb{R}^{d \times I} \quad B \in \mathbb{R}^{d \times I} \quad C \in \mathbb{R}^{d \times o}$

Then we can define:

 $Z = softmax(QAB^TQ^T) QC$

Intuition:

• QC is a matrix of new word embeddings

- QAB^TQ^T is an n × n matrix of inner products in a new *l*-dimensional space
- softmax(.) makes the matrix positive and the rows sum to 1 (*self-attention*)

Encoder example

Multi-Headed Self-Attention

Say *d* = 512, *o* = 64, and h = 8

Define parameters A^{j} , $B^{j} \in \mathbb{R}^{d \times 1}$ $C^{j} \in \mathbb{R}^{d \times \circ}$ for j = 1...h

For *j* = 1...h:

 $Z^{j} \in \mathbb{R}^{n \times 64}$ = softmax(QA^jB^{jT}Q^T) QC^j

 $Z \in \mathbb{R}^{n \times 512} = \text{concat}(Z^1, Z^2, ..., Z^h)$

Z' = feed-forward(layer-norm(Q + Z))

Final Transformer model

Linguistically-Informed Self-Attention

Pre-trained Transformers

BERT: Pre-trained Transformer (Devlin et al., 2018)

BERT input

Input	[CLS]	my	dog	is	cute	[SEP]	he	likes	play	##ing	[SEP]
Token Embeddings	E _[CLS]	E _{my}	E _{dog}	E _{is}	E _{cute}	E _[SEP]	E _{he}	E _{likes}	E _{play}	E _{##ing}	E _[SEP]
	+	+	+	+	+	+	+	+	+	· +	+
Segment Embeddings	E _A	E _A	E _A	E _A	E _A	E _A	E _B	E _B	E _B	E _B	E _B
	+	+	+	+	+	+	+	+	+	+	+
Position Embeddings	E ₀	E ₁	E ₂	E ₃	E ₄	E ₅	E ₆	E ₇	E ₈	E ₉	E ₁₀
Training: with masked input, predict gaps

Training: next sentence prediction

Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk.
Label = IsNextSentence

Sentence A = The man went to the store.
Sentence B = Penguins are flightless.
Label = NotNextSentence

What can pre-training give us? (Tenney et al., 2019)

Tenney et al. (2019). BERT Rediscovers the Classical NLP Pipeline.

What can pre-training give us? (Tenney et al., 2019)

Tenney et al. (2019). BERT Rediscovers the Classical NLP Pipeline.

What can pre-training give us? (Tenney et al., 2019)

(b) china **today** blacked out a cnn interview that was ...

Summary

Many structures in NLP take the form of graphs

We can condition on them using graph convolutional networks, GCNs

It becomes more and more interesting to see how much linguistics is already present in models, especially now that pre-trained models are becoming very powerful (e.g. BERT)

A recent BERT analysis shows that the hierarchy of BERT layers resembles a classic NLP pipeline, where POS-tagging is done first, then dependency parsing, NER, etc.

However, semantic information seems to be spread out a lot; currently it is unclear why

Thank you!

GCN resources:

- Syntactic GCN (simple PyTorch version):: https://tinyurl.com/syngcn
- Undirectional GCN from Thomas Kipf with blogpost: <u>https://github.com/tkipf/pygcn</u> <u>https://tkipf.github.io/graph-convolutional-networks/</u>
- The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables <u>https://arxiv.org/abs/1611.00712</u>

NMT resources:

- Annotated Encoder-Decoder with Attention blog post (NMT tutorial in PyTorch): <u>https://bastings.github.io/annotated_encoder_decoder/</u>
- Joey NMT a simple NMT toolkit in PyTorch: <u>https://github.com/joeynmt/joeynmt</u>

Graph Convolution Surveys:

- Graph Neural Networks: A Review of Methods and Applications <u>https://arxiv.org/abs/1812.08434</u>
- Deep Learning on Graphs: A Survey
 <u>https://arxiv.org/abs/1812.04202</u>
- A Comprehensive Survey on Graph Neural Networks
 <u>https://arxiv.org/abs/1901.00596</u>

Related paper in NLP:

 Beck et al. (2018) Graph-to-Sequence Learning using Gated Graph Neural Networks <u>https://arxiv.org/abs/1806.09835</u> (AMR and NMT with dependency input)