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In NLP is natural to represent linguistic/prior knowledge as graphs
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Encoder-Decoder models are agnostic to this 
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Sutskever et al. (2014), Cho et al. (2014)

du vet ingenting jon snow

you know nothing jon snow



Convolution vs Graph Convolution
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2D convolution
e.g. image filter

graph convolution
e.g. social network



Graph Convolutional Networks: message passing
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hi = ReLU ( W’hi +    ∑   Whj )

Kipf & Welling (2017). Related ideas earlier, e.g., Scarselli et al. (2009).

hi

Undirected graph Update of red node

j ∈ neighbors(i)



GCNs: multilayer convolution operation
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Adapted from Thomas Kipf. 



GCNs: multilayer convolution operation
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Implementation note
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 Â H W

Â = A + I
Hl+1 = ReLU(ÂHlWl)



Syntactic GCNs: directionality and labels
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Syntactic GCNs: edge-wise gating
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Conditioning on graphs:
Syntax-aware Semantic Role Labeling
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Semantic Role Labeling: “Who did what to whom?”
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Example goal: identify a stock purchase 
event by Snow Ltd.

Many different surface forms! 

● Snow Ltd. bought the stock
● They sold the stock to Snow Ltd.
● The stock was bought by Snow Ltd.
● The purchase of the stock by Snow Ltd. 
● The stock purchase by Snow Ltd. ...

Semantic roles are abstract models of the role 
an argument plays in the event described by the 
predicate

Roles can be predicate-specific 
(A0, A1 are usually agent and patient)

SRL is the task of assigning semantic role labels 
to the constituents of a sentence



Syntax/semantics interaction
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Some syntactic dependencies are mirrored in the semantic graph



Syntax/semantics interaction
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Sequa makes and repairs jet

subj

agent

engines

coord
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patient

Some syntactic dependencies are mirrored in the semantic graph

… but not all of them – the syntax-semantics is interface is far from trivial

agent

patient



GCNs for SRL
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Marcheggiani & Titov (EMNLP, 2017)
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GCNs for SRL
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GCNs for SRL
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GCNs for SRL
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GCNs for SRL
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Marcheggiani & Titov (EMNLP, 2017)
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SRL Results (English)
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SRL Results (Chinese)
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Conditioning on graphs: 
Linguistically-informed 
Neural Machine Translation
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Encoder-decoder with Attention
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Bahdanau et al. (2015)

you know nothing jon

du

snow



Encoder-decoder with Attention
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Bahdanau et al. (2015)
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Encoder-decoder with Attention
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Encoder-decoder with Attention
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Encoder-decoder with Attention
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Bahdanau et al. (2015)
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Source Target

Interlingua

An
al

ys
is

Generation

Lexical transfer

Syntactic transfer

Semantic transfer

Vauquois triangle (1968)
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Motivation
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State-of-the-art NMT systems lack any explicit modeling of syntax.

They fully rely on an LSTM (or self-attention) to capture syntactic phenomena.

We can use GCNs to condition on syntax and/or semantics



Graph Convolutional Encoders for NMT

31

the dragon torched the city

det nsubj

det

dobj

Encoder
(RNN, CNN, or embeddings)

GCN layer 2

W out W out
W out

W
out

GCN layer 1

W out
W out

W
out

W out



GCNs for NMT
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Bastings, Titov, Aziz, Marcheggiani, Sima’an (EMNLP, 2017)
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GCNs for NMT
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Bastings, Titov, Aziz, Marcheggiani, Sima’an (EMNLP, 2017)
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GCNs for NMT
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Bastings, Titov, Aziz, Marcheggiani, Sima’an (EMNLP, 2017)
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Random sequences from 26 types

Each token is linked to its predecessor 

Sequences are randomly permuted

Each token is also linked to a random token 
with a “fake edge” using a different label set

Artificial reordering experiment
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A BiRNN+GCN model is able to learn how to put 
the permuted sequences back into order.

Real edges are distinguished from fake edges.

s n o w

n s w o



Machine Translation experiments
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We parse English source sentences using Google’s SyntaxNet 

BPE on target side (8k merges, 16k for WMT’16)

Embeddings: 256 units, GRUs/CNNs: 512 units (800 for WMT’16)

Train Validation
newstest2015

Test
newstest2016

English-German NCv11 227 k
2169 2999

WMT‘16 4.5 M

English-Czech NCv11 181 k 2656 2999



Three baselines
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Bag of words Convolutional Recurrent



Results English-German (BLEU)
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Results English-Czech (BLEU)
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Effect of GCN layers
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English-German English-Czech

BLEU1 BLEU4 BLEU1 BLEU4

BiRNN 44.2 14.1 37.8 8.9

+ GCN 1L 45.0 14.1 38.3 9.6

+ GCN 2L 46.3 14.8 39.6 9.9



Effect of sentence length
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Flexibility of GCNs
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In principle we can condition on any kind of graph-based linguistic structure:

Semantic Role Labels

Co-reference chains

AMR semantic graphs



NMT with Syntax and Semantics
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We can condition on both syntax and 
semantics:

● Dependency graph
● Semantic role structures



Semantics can help to get the right translation
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Inducing graphs
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Inducing graphs
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Instead of conditioning on a graph, we can try 
to induce one

The idea is the following:

1. Predict the graph for a sentence
2. Process that sentence using the 

predicted graph, instead of conditioning 
on an externally provided graph

There is lots of related work here on inducing 
trees, usually with natural language inference 
(NLI) as a downstream task. 

See e.g. Williams et al. "Do latent tree learning 
models identify meaningful structure in 
sentences?." TACL, 2018.



Inducing graphs with Neural Machine Translation
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We define a deep generative model with:

1. a graph component 
samples graph a conditioned on x

2. a translation component
given x and a, predicts translation y



Graph component
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Samples for each source position i an 
m-dimensional probability vector Ai:

Ai | x1..m ∼ Concrete(τ, λi ) 

We interpret Ai as a head distribution

● aik is the relative strength of the 
edge xi → xk 

● ‘Head potentials’ λi are computed with 
self-attention

Self-attention

Chris J. Maddison, et al.. (2017)



Translation component
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Attentive encoder-decoder that incorporates 
graph A = am..1 using graph convolution 

S = encode(x1,...,xm)

We then sample target words one step a a time:



Objective
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We optimize the following objective:



Experiments
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German-English (IWSLT14) and Japanese-English (ASPEC)

Train Dev Test Vocabulary

De-En 153K 7282 6750 32010/22823

Ja-En 2M 1790 1812 16384 (SPM)



Results
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Analysis
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The mean head distance shows that the graphs may capture non-local dependencies

The mean entropy shows that the graphs have a high degree of sparsity



Examples
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Further readings
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Not a deep generative model, but with restrictions on the induced graph:

Tran & Bisk. Inducing Grammars with and for Neural Machine Translation.

ACL NMT workshop 2018



Transformer
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Transformer (Vaswani et al., 2017)

57Source: Google AI blog
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Attention visualization
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Attention visualization
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Attention visualization
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Attention visualization
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Attention visualization
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Attention visualization
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Transformer (Vaswani et al., 2017)
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Start with input sequence w1, w2, …, wn

Map to sequence of vectors x1, x2, …, xn
each xi ∈ℝd

Stack the vectors to make matrix Q ∈ℝn x d 

Define the parameters of the transformation:

A ∈ℝd ⨉ l B ∈ℝd ⨉ l C ∈ℝd ⨉ o

Then we can define:

Z = softmax(QABTQT) QC

Intuition:

● QC is a matrix of new word embeddings

● QABTQT is an n ⨉ n  matrix of inner products 

in a new l-dimensional space

● softmax(.) makes the matrix positive and 

the rows sum to 1 (self-attention)Source: Michael Collins

QA BTQT QC

Z



Encoder example

66Source: Michael Collins



Multi-Headed Self-Attention

67Source: Michael Collins

Say d = 512, o = 64, and h = 8

Define parameters Aj, Bj ∈ℝd ⨉ l  Cj ∈ℝd ⨉ o  for j = 1...h

For j = 1...h:

Zj ∈ℝn ⨉ 64 = softmax(QAjBjTQT) QCj

Z∈ℝn ⨉ 512 = concat(Z1, Z2, …, Zh)

Z’ = feed-forward(layer-norm(Q + Z))

Z’

Q Q Q



Final Transformer model

68



Linguistically-Informed Self-Attention
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I saw the sloth climbing

Strubell et al. (EMNLP, 2018)

Train first attention 
head to predict the 
syntactic head



Pre-trained Transformers
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BERT: Pre-trained Transformer (Devlin et al., 2018)
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BERT input
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Training: with masked input, predict gaps
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Training: next sentence prediction
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What can pre-training give us? (Tenney et al., 2019)

75Tenney et al. (2019). BERT Rediscovers the Classical NLP Pipeline.



What can pre-training give us? (Tenney et al., 2019)
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What can pre-training give us? (Tenney et al., 2019)

77Tenney et al. (2019). BERT Rediscovers the Classical NLP Pipeline.



Summary
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Many structures in NLP take the form of graphs

We can condition on them using graph convolutional networks, GCNs

It becomes more and more interesting to see how much linguistics is already present in models, 

especially now that pre-trained models are becoming very powerful (e.g. BERT)

A recent BERT analysis shows that the hierarchy of BERT layers resembles a classic NLP pipeline, 

where POS-tagging is done first, then dependency parsing, NER, etc.

However, semantic information seems to be spread out a lot; currently it is unclear why



Thank you!
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GCN resources:

● Syntactic GCN (simple PyTorch version):: 
https://tinyurl.com/syngcn

● Undirectional GCN from Thomas Kipf with blogpost: 
https://github.com/tkipf/pygcn 
https://tkipf.github.io/graph-convolutional-networks/ 

● The Concrete Distribution: A Continuous Relaxation of 
Discrete Random Variables 
https://arxiv.org/abs/1611.00712

NMT resources:

● Annotated Encoder-Decoder with Attention blog post 
(NMT tutorial in PyTorch): 
https://bastings.github.io/annotated_encoder_decoder/ 

● Joey NMT - a simple NMT toolkit in PyTorch: 
https://github.com/joeynmt/joeynmt 

Graph Convolution Surveys:

● Graph Neural Networks: A Review of Methods and 

Applications https://arxiv.org/abs/1812.08434  

● Deep Learning on Graphs: A Survey

https://arxiv.org/abs/1812.04202  

● A Comprehensive Survey on Graph Neural Networks

https://arxiv.org/abs/1901.00596   

Related paper in NLP:

● Beck et al. (2018) Graph-to-Sequence Learning using Gated 

Graph Neural Networks https://arxiv.org/abs/1806.09835 

(AMR and NMT with dependency input)

https://tinyurl.com/syngcn
https://github.com/tkipf/pygcn
https://tkipf.github.io/graph-convolutional-networks/
https://arxiv.org/abs/1611.00712
https://bastings.github.io/annotated_encoder_decoder/
https://github.com/joeynmt/joeynmt
https://arxiv.org/abs/1812.08434
https://arxiv.org/abs/1812.04202
https://arxiv.org/abs/1901.00596
https://arxiv.org/abs/1806.09835

