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Recap.

Artificial Neural Networks [1]

Let x ∈ R4,h ∈ R4, y ∈ R2.
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Recap.

Artificial Neural Networks [2]

Let x ∈ R4,h ∈ R4, y ∈ R2,

Wih ∈ R4×4 and bih ∈ R4, and

Who ∈ R4×2 and bho ∈ R2.

h = f(xTWih + bih),

y = g(hTWho + bho).
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Recap.

Recurrent Neural Networks[1]
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Recap.

Recurrent Neural Networks[2]

ht = f(Wihxt + Whhht−1 + bih),

yt = g(Whoht + bho).
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Recap.

Recurrent Neural Networks[3]

• For a sequence of input vectors x = {x1, x2, x3}, an RNN will
compute a sequence of hidden states H = {h1,h2,h3}, and
optionally a sequence of output vectors y = {y1, y2, y3}.
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Recap.

RNN vs. FFNN
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Recap.

RNN Language Model
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Introduction

Word Embeddings: what are they?

Word embedding matrix:

Tipically, an embedding matrix is denoted by W or E .
Ex : source-language embeddings;
Ey : target-language embeddings.

E ∈ R|V |×d ,
where V is the vocabulary and d is the word embedding dimensionality.
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Introduction

Word Embeddings: where do they come from?

Random initialisation (when enough training data is available)
E.g. Sample from a uniform distribution [-0.1,+0.1];

Supervised pre-training
Train the embeddings first in a task for which there is abundant data;

Unsupervised pre-training
Create your own supervised task from raw text (e.g. word2vec);
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Introduction

Word Embeddings: word2vec (Mikolov et al., 2014)

Continuous Bag-Of-Words Model (CBOW)

The model predicts the current word given the surrounding words.
Supervision is obtained by iterating a corpus and using a fixed window to
gather surrounding words.

Example:

· · · finished . the cat jumped like crazy and the giraffe · · ·

Input X = {x1, x2,_, x4, x5}
Output Y = {x3}
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Introduction

Word Embeddings: word2vec (Mikolov et al., 2014)

Example:

· · · the cat jumped like crazy · · ·

Input X = {x1, x2,_, x4, x5}
Output Y = {x3}
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Introduction

Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997)

Image credits: Ma, Xiang, Du, and Fan. (2018).

it = σ(Wixt + Uiht−1)

ft = σ(Wf xt + Uf ht−1)

ot = σ(Woxt + Uoht−1)

at = tanh(Wcxt + Ucht−1)

ct = it � at + ft � ct−1

ht = ot � tanh(ct)
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Introduction

Some different roles RNNs take

Given a sequence of inputs X = {x1, · · · , xn}, in short x1:n:

• Encoder: compute a sequence of hidden states h1:n, or perhaps we
just need to encode the entire sequence X into a fixed-size vector hn;

• Acceptor: accept/reject X ;
• spam detection, sentiment classification;

• Transducer: compute a sequence of outputs for each xi ;
• part-of-speech tagging, language modelling;

• Encoder-Decoder: encode X and use the last hidden state hn to
initialise another RNN that generates a sequence of output words
y1:m;

• machine translation, text summarisation;
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Encoder–Decoder

Encoder–Decoder or seq2seq (Cho et al., 2014; Sutskever et al., 2014)

Components:
• Encoder: projects the source-language sentence X into a
fixed-dimensional feature vector h;

• Decoder: generates the target-language translation Y of X from h;
• Typically, encoder and decoder are both LSTM networks.
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Encoder–Decoder

Encoder–Decoder
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Encoder–Decoder

Encoder–Decoder: step-by-step

• Word embeddings
• source: Ex ["you"],Ex ["know"],Ex ["nothing"],Ex ["john"],Ex ["snow"]
• target: Ey ["du"],Ey ["vet"],Ey ["ingenting"],Ey ["john"],Ey ["snow"]
• source a.k.a.: X = {x1, · · · , x5}
• target a.k.a.: Y = {y1, · · · , y5}
• In short: X = x1:5 and Y = y1:5.

• Encoder
• h0 = ~0;
• h1:5 = LSTMx(x1:5);

• Decoder
• s0 = mean(h1:5), or s0 = h5;
• s1:5 = LSTMy (y1:5)

• Readout: ŷ1:5 = argmax softmax(s1:5)

• Loss: L(Ŷ ,Y ) =
∑

i L(ŷi , yi )
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Encoder–Decoder

Encoder–Decoder: step-by-step
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Encoder–Decoder

An Idea on Backpropagation Through Time
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Encoder–Decoder

An Idea on Backpropagation Through Time
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Encoder–Decoder

Vanishing and Exploding Gradients

Vanilla RNNs are difficult to train because they suffer from the “vanishing
gradients” problem.

During training with back-propagation, gradients quickly become small as
the length of the RNN grows because of the chain rule.

In more rare situations, it is also possible that gradients explode.
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Encoder–Decoder

Bidirectional RNNs
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Encoder–Decoder

Multilayer RNNs
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Attention

Encoder-Decoder with Attention (Bahdanau et al., 2014; Luong et al., 2015)
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Dealing with Unknown Words and Other Tricks

Unknown Words

Softmax is a very expensive operation.

That means we must limit the target vocabulary, e.g. most frequent 50k
words.

Any other words (i.e., out-of-vocabulary words) are now translated as UNK.

What can we do about this?
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Dealing with Unknown Words and Other Tricks

Using byte-pair encodings (Sennrich et al., 2016)

Start with a vocabulary of characters only.

Repeat: replace each most frequent pair (’A’, ’B’) with a new symbol ’AB’.

Dictionary:
5 l o w </w>

2 l o w e r </w>

6 n e w e s t </w>

3 w i d e s t </w>

Vocabulary:
l o w e r n s t i d
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Dealing with Unknown Words and Other Tricks

Using byte-pair encodings

Start with a vocabulary of characters only.

Repeat: replace each most frequent pair (’A’, ’B’) with a new symbol ’AB’.

Dictionary:
5 l o w </w>

2 l o w e r </w>

6 n e w e s t </w>

3 w i d e s t </w>

Vocabulary:
l o w e r n s t i d es

Add pair (’e’,’s’) with a frequency of 9.
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Dealing with Unknown Words and Other Tricks

Using byte-pair encodings

Start with a vocabulary of characters only.

Repeat: replace each most frequent pair (’A’, ’B’) with a new symbol ’AB’.

Dictionary:
5 l o w </w>

2 l o w e r </w>

6 n e w e s t </w>

3 w i d e s t </w>

Vocabulary:
l o w e r n s t i d es est

Add pair (’es’, ’t’) with a frequency of 9.
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Dealing with Unknown Words and Other Tricks

Using byte-pair encodings

Start with a vocabulary of characters only.

Repeat: replace each most frequent pair (’A’, ’B’) with a new symbol ’AB’.

Dictionary:
5 l o w </w>

2 l o w e r </w>

6 n e w e s t </w>

3 w i d e s t </w>

Vocabulary:
l o w e r n s t i d es est

lo

Add pair (’l’, ’o’) with a frequency 7.
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Dealing with Unknown Words and Other Tricks

References

Bahdanau, Cho, and Bengio (2014). Neural Machine Translation by Jointly Learning to
Align and Translate. Arxiv pre-print: 1409.0473.

Hochreiter and Schmidhuber (1997). Long Short-Term Memory. Journal Neural
Computation. Volume 9, Issue 8, November 1997. p.1735-1780.

Luong, Pham,and Manning (2015). Effective Approaches to Attention-based Neural
Machine Translation. In: EMNLP 2015.

Ma, Xiang, Du, and Fan. (2018). Effects of user-provided photos on hotel review
helpfulness: An analytical approach with deep learning. International Journal of
Hospitality Management. 71. 120-131.

Mikolov, Chen, Corrado, and Dean (2014). Efficient Estimation of Word
Representations in Vector Space. Arxiv pre-print: 1301.3781.

Sennrich, Haddow, and Birch (2016). Neural Machine Translation of Rare Words with
Subword Units. In: ACL 2016.

Sutskever, Vinyals, and Le (2014). Sequence to Sequence Learning with Neural
Networks. In: NIPS 2014.

Iacer Calixto (ILLC, UvA) Neural Machine Translation May 18, 2018 30 / 30


	Recap.
	Introduction
	Encoder–Decoder
	Attention
	Dealing with Unknown Words and Other Tricks

