Neural Machine Translation

Joost Bastings
http://joost.ninja

Google Translate

Demo: Sampling from a neural conditional language model

Google Translate

Italian	Greek	German	Albanian - detected		$\stackrel{\square}{\square}$	Latvian	Catalan	English
llallalla \times						With lime		
llallallalla						With soda		
llallallallalla						With sledding		
Ilallallallallalla						With the sledding		
llallallallallallalla						With sledding		
Ilallallallallallallalla						With the sled		
Ilallallallallallallallalla						With sleds		
Ilallallallallallallallallalla						With a cushion		
Ilallallallallallallallallallalla						Sagging		
Ilallallallallallallallallallallalla						Sagging		
Ilallallallallallallallallallallallalla						Sagging		
Ilallallallallallallallallallallallallalla						Stock photography		
Ilallallallallallallallallallallallallallalla						With a Sense Of It		
Ilallallallallallallallallallallallallallallallalla						With a Sense Of ItWith the Sole		
Ilallallalallallallallalallallallallalallallallallala								
Ilalla								
Ilalla						With a Sole MuddleWith a muddle		
Ilallallallallallallallallallallallallallallalallallallallalallalla								
Ilalla						Sag SalmonSag Sleigh		
Ilalla						Sag Sleigh The muddle		
Ilalla						From the mudal		
Ilallallallallalaallallallallalaallallallallalaallallallallalallallallallallalla						The salmon		

Google Translate

```
Italian Greek German Finnish - detected
iä iä
```


English Spanish Arabic
 Translate

```
iä iä iä iä
```

iä iä iä iä
iä iä iä iä iä
iä iä iä iä iä
iä iä iä iä iä iä
iä iä iä iä iä iä
iä iä iä iä iä iä iä
iä iä iä iä iä iä iä
iä iä iä iä iä iä iä iä
iä iä iä iä iä iä iä iä
iä iä iä iä iä iä iä iä iä
iä iä iä iä iä iä iä iä iä
iä iä iä iä iä iä iä iä iä iä
iä iä iä iä iä iä iä iä iä iä
iä iä iä iä iä iä iä iä iä iä iä
iä iä iä iä iä iä iä iä iä iä iä
iä iä iä iä iä iä iä iä iä iä iä iä
iä iä iä iä iä iä iä iä iä iä iä iä
iä iä iä iä iä iä iä iä iä iä iä iä iä
iä iä iä iä iä iä iä iä iä iä iä iä iä
iä iä iä iä iä iä iä iä iä iä iä iä iä iä
iä iä iä iä iä iä iä iä iä iä iä iä iä iä
iä iä iä iä iä iä iä iä iä iä iä iä iä iä iä
iä iä iä iä iä iä iä iä iä iä iä iä iä iä iä
iä iä iä iä iä iä iä iä iä iä iä iä iä iä iä iä
iä iä iä iä iä iä iä iä iä iä iä iä iä iä iä iä
iä iä iä iä iä iä iä iä iä iä iä iä iä iä iä iä iä
iä iä iä iä iä iä iä iä iä iä iä iä iä iä iä iä iä
iä iä iä iä iä iä iä iä iä iä iä iä iä iä iä iä iä iä

```
iä iä
```

```
I do not sleep
```

I do not sleep
I do not know
I do not know
I do not know
I do not know
And give it to you
And give it to you
And give it to it
And give it to it
And give it to them
And give it to them
And give them leave
And give them leave
And give them and give them
liiiiiiiiiiiiiiiii
liiiiiiiiiiiiiiiii
liiiiiiiiiiiiiiiiiii
liiiiiiiiiiiiiiiiiii
I andiiiiiiiiiiiii
I andiiiiiiiiiiiii
I andiiiiiiiiiiiii
I andiiiiiiiiiiiii
lii

```
liiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
```


today recap: RNNs
 encoder-decoder attention models dealing with unknown words

Recap

Recap: Matrix Multiplication

1 2 3 4 5 6 2×3 1 2 1 2 1 2	$=$
3×2	

Recap: Activation functions

FFNN vs. RNN

$$
\begin{array}{ll}
\mathbf{h}=\phi(\mathrm{W} \mathbf{x}+\mathbf{b}) & \mathbf{h}_{\mathrm{i}}=\phi\left(\mathrm{W} \mathbf{x}+U \mathbf{h}_{\mathrm{i}-1}+\mathbf{b}\right) \\
\mathbf{y}=\mathrm{W}^{\prime} \mathbf{h}+\mathbf{b}^{\prime} & \mathbf{y}_{\mathrm{i}}=\mathrm{W}^{\prime} \mathbf{h}_{\mathbf{i}}+\mathbf{b}^{\prime}
\end{array}
$$

RNN language model

Word embeddings

Where do they come from?

Random initialization (when enough training data)
E.g. sample from uniform distribution [-0.01, 0.01]

Supervised pre-training
Train the embeddings first on another task for which you have more data

Unsupervised pre-training
Create your own supervised training instances, e.g. word2vec

The RNN abstraction

The RNN abstraction

> Input:
> a sequence of input vectors $\mathbf{x}_{\mathrm{i}: \mathrm{j}}=\mathbf{x}_{\mathrm{i}}, \ldots, \mathbf{x}_{\mathrm{j}}$ initial state vector \mathbf{h}_{0}
> Output:
> a sequence of state vectors $\mathbf{h}_{1}, \ldots, \mathbf{h}_{\mathrm{n}}$
> \mathbf{h}_{i} represents the state of the RNN after observing $\mathbf{x}_{1: i}$

Example:

a model for predicting the conditional prob. of an event e given the sequence $\mathbf{x}_{1: i}$

$$
\mathrm{p}\left(e=\mathrm{j} \mid \mathbf{x}_{1: \mathrm{i}}\right)=\operatorname{softmax}\left(\mathbf{h}_{\mathrm{i}} \mathrm{~W}+\mathbf{b}\right)[\mathrm{j}]
$$

The RNN abstraction (2)

We have now defined a recursive function:

$$
\begin{aligned}
& R N N\left(\mathbf{h}_{0}, \mathbf{x}_{1: n}\right)=\mathbf{h}_{1: n} \\
& \mathbf{h}_{\mathrm{i}}=R\left(\mathbf{h}_{\mathrm{i}-1}, \mathbf{x}_{\mathrm{i}}\right) \\
& \mathbf{x}_{\mathrm{i}} \in \text { Re }^{\mathrm{e}} \\
& \mathbf{h}_{\mathrm{i}} \in \text { Red }^{\mathrm{d}}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{h}_{4} & =R\left(\mathrm{~h}_{3}, \mathbf{x}_{4}\right) \\
& =R\left(R\left(\mathbf{h}_{2}, \mathbf{x}_{3}\right), \mathbf{x}_{4}\right) \\
& =R\left(R\left(R\left(\mathbf{h}_{1}, \mathbf{x}_{2}\right), \mathbf{x}_{3}\right), \mathbf{x}_{4}\right) \\
& =R\left(R\left(R\left(R\left(\mathrm{~h}_{0}, \mathbf{x}_{1}\right), \mathbf{x}_{2}\right), \mathbf{x}_{3}\right) \mathbf{x}_{4}\right)
\end{aligned}
$$

During training we hope to set the parameters of R in such a way so that the states h_{i} contain useful information for the prediction task.

The RNN abstraction (3)

Various roles for RNNs

Acceptor

observe final state \mathbf{h}_{n} and decide on an outcome, e.g. sentiment classification

Encoder

final state \mathbf{h}_{n} is treated as an encoding of the information in the sequence, and is used as additional information together with other signals. e.g. extractive summarization

Transducer
produce an output for each input, e.g. language modeling

Encoder - Decoder
translation! final state \mathbf{h}_{n} is used as additional input to another RNN

Concrete RNN architectures: Simple RNN

$$
\begin{gathered}
R N N\left(\mathbf{h}_{0}, \mathbf{x}_{1: n}\right)=\mathbf{h}_{1: n} \\
\mathbf{h}_{i}=R\left(\mathbf{h}_{i-1}, \mathbf{x}_{\mathrm{i}}\right)=\phi\left(\mathbf{x}_{\mathrm{i}} \mathrm{~W}+\mathbf{h}_{\mathrm{i}} \mathrm{U}+\mathbf{b}\right) \\
\mathbf{x}_{\mathrm{i}} \in \mathbb{R}^{\mathrm{e}} \quad \\
\mathbf{h}_{\mathrm{i}} \in \mathbb{R}^{\mathrm{d}} \quad \mathrm{~W} \in \mathbb{R}^{\mathrm{exd}} \quad \mathrm{U} \in \mathbb{R}^{\mathrm{dxd}} \quad \mathbf{b} \in \mathbb{R}^{\mathrm{d}}
\end{gathered}
$$

Training

$$
\frac{\delta \mathcal{F}}{\delta U}=\sum_{i=1}^{4} \frac{\delta \mathbf{h}_{i}}{\delta U} \frac{\delta \mathcal{F}}{\delta \mathbf{h}_{i}}
$$

This is called backpropagation through time (BPTT)

The vanishing \& exploding gradient problem

Simple RNNs are hard to train because of the vanishing gradient problem.

During backpropagation, error signals (gradients) from later time steps quickly become small, as they repeatedly go through nonlinear functions.

In more rare situations, it is also possible for the gradient to explode.

Intuition to solving the vanishing gradient

Intuition to solving the vanishing gradient (2)
Better gradient propagation is possible when you use additive rather than multiplicative/highly non-linear recurrent dynamics

Concrete RNN architectures: LSTM

$$
\begin{aligned}
& \operatorname{LSTM}\left(\left[\mathbf{c}_{i-i} ; \mathbf{h}_{\mathrm{i}-1}\right], \mathbf{x}_{\mathrm{i}}\right)=\left[\mathbf{c}_{\mathbf{i}} ; \mathbf{h}_{\mathrm{i}}\right] \\
& c_{i}=c_{i-1} \odot f+g \odot i \\
& \mathbf{h}_{\mathrm{i}}=\tanh \left(\mathbf{c}_{\mathbf{i}}\right) \odot \mathbf{o} \\
& \mathbf{i}=\sigma\left(\mathbf{x}_{\mathrm{i}} \mathrm{~W}^{\mathrm{xi}}+\mathbf{h}_{\mathrm{i}-1} \mathbf{W}^{\mathrm{hi}}\right) \quad \mathbf{f}=\sigma\left(\mathbf{x}_{\mathrm{i}} \mathrm{~W}^{\mathrm{xf}}+\mathbf{h}_{\mathrm{i}-1} \mathrm{~W}^{\mathrm{hf}}\right) \quad \mathbf{0}=\sigma\left(\mathbf{x}_{\mathrm{i}} \mathrm{~W}^{\mathrm{xo}}+\mathbf{h}_{\mathrm{i}-1} \mathrm{~W}^{\mathrm{ho}}\right) \quad \mathbf{g}=\tanh \left(\mathbf{x}_{\mathrm{i}} \mathrm{~W}^{\mathrm{xg}}+\mathbf{h}_{\mathrm{i}-1} \mathbf{W}^{\mathrm{hg}}\right)
\end{aligned}
$$

LSTM

Legend

-_unweighted connection
_- weighted connection
----.-. connection with time-lag

- branching point
\odot mutliplication
(sum over all inputs

gate activation function
(always sigmoid)

input activation function (usually tanh)

output activation function (usually tanh)

Encoder-Decoder

Encoder-Decoder Training

Bidirectional RNN

Multi-layer RNN

Encoder-decoder with Attention

Unknown words

Dealing with unknown words

The softmax over the output layer is very expensive!

In practice we need to use a limited vocabulary, e.g. the top 50000 words.

Infrequent words are now translated as "UNK"

Not so ideal! What can we do about this?

One solution: Byte Pair Encoding

Start with a vocabulary of characters
Repeat: replace each most frequent pair ('A', 'B') with a new symbol 'AB'

```
Dictionary
5 l o w </w>
2 l o w e r </w>
6 n e w e s t </w>
3 w i d e s t </w>
```

Vocabulary
l, $o, w, e, r, n, w, s, t, i, d$

Vocabulary
l, $0, \mathrm{w}, \mathrm{e}, \mathrm{r}, \mathrm{n}, \mathrm{w}, \mathrm{s}, \mathrm{t}, \mathrm{i}, \mathrm{d}$

One solution: Byte Pair Encoding

Start with a vocabulary of characters
Repeat: replace each most frequent pair ('A', 'B') with a new symbol 'AB'

```
Dictionary
5 l o w </w>
2 l o w e r </w>
6 n e w es t </w>
3 w i d es t </w>
```

Vocabulary
l, $o, w, e, r, n, w, s, t, i, d$,
es

Add pair (e, s) with frequency 9

One solution: Byte Pair Encoding

Start with a vocabulary of characters
Repeat: replace each most frequent pair ('A', 'B') with a new symbol 'AB’

```
Dictionary
5 l o w </w>
2 l o w e r </w>
6 n e w est </w>
3 w i d est </w>
```

```
Vocabulary
l, o, w, e, r, n, w, s, t, i, d,
es, est
Add pair (es, t) with frequency 9
```


One solution: Byte Pair Encoding

Start with a vocabulary of characters
Repeat: replace each most frequent pair ('A', 'B') with a new symbol 'AB'

```
Dictionary
5 lo w </w>
2 lo w e r </w>
6 n e w est </w>
3 w i d est </w>
```

Vocabulary
l, $o, ~ w, ~ e, ~ r, ~ n, ~ w, ~ s, ~ t, ~ i, ~ d, ~$ es, est, lo

Add pair (l, o) with frequency 7

Example: WMT17 English-Latvian

source:
critics said the government funding described by the Los Angeles-based ...

> target:
> kritiki apgalvo , ka
> Losandželosas
> metropoles
> ūdensapgādes pārvaldes ...
> target_bpe:
> krit@@ ik@@i apgalv@@ o , ka
> L@@ os@@ and@@ ž@@ el@@ os@@ as
> me@@ tr@@ op@@ ol@@ es
> ūden@@ sa@@ p@@ gād@@ es pārvaldes ...

Another solution: Character-based NMT

Do we need to use RNNs?

Convolutions instead of RNNs

References

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le.
"Sequence to sequence learning with neural networks." NIPS, 2014.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." ICLR, 2015. arXiv:1409.0473.

