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Google Translate
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Demo: Sampling from a neural conditional language model
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today
recap: RNNs
encoder-decoder
attention models
dealing with unknown words
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Recap
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Recap: Matrix Multiplication
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Recap: Activation functions
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FFNN vs. RNN
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RNN language model
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Mikolov et al.  (2010)
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Word embeddings
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Where do they come from?

Random initialization (when enough training data)

E.g. sample from uniform distribution [-0.01, 0.01]

Supervised pre-training

Train the embeddings first on another task for which you have more data

Unsupervised pre-training

Create your own supervised training instances, e.g. word2vec

Source: Goldberg (2015)



The RNN abstraction
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The RNN abstraction
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Input: 

a sequence of input vectors xi:j = xi, ..., xj 

initial state vector h0

Output: 

a sequence of state vectors h1, ..., hn

hi  represents the state of the RNN after observing x1:i

Example: 

a model for predicting the conditional prob. of an event e given the sequence x1:i

p(e = j | x1:i) = softmax(hiW + b)[ j ]

Source: Goldberg (2015)



The RNN abstraction (2)
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We have now defined a recursive function:

RNN(h0, x1:n) = h1:n

hi = R(hi-1, xi)

xi ∈ ℝe

hi ∈ ℝd

Source: Goldberg (2015)

During training we hope to set the parameters of R in such a way so that 
the states hi contain useful information for the prediction task.

h4 = R(h3, x4)

= R(R(h2, x3), x4)

= R(R(R(h1, x2), x3), x4)

= R(R(R(R(h0, x1), x2), x3) x4)Here, R is a function!



The RNN abstraction (3)
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Adapted from Goldberg (2015)
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Various roles for RNNs
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Acceptor

observe final state hn and decide on an outcome, e.g. sentiment classification

Encoder

final state hn is treated as an encoding of the information in the sequence, and is used as additional 

information together with other signals. e.g. extractive summarization

Transducer

produce an output for each input, e.g. language modeling

Encoder - Decoder

translation! final state hn is used as additional input to another RNN



Concrete RNN architectures: Simple RNN
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RNN(h0, x1:n) = h1:n

hi = R(hi-1, xi) = ᶰ(xiW + hiU + b)

xi ∈ ℝe hi ∈ ℝd W ∈ ℝe⨉d U ∈ ℝd⨉d b ∈ ℝd



Training
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Adapted from Goldberg (2015)
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predict & 
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sum

loss This is called backpropagation 
through time (BPTT)



The vanishing & exploding gradient problem
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Simple RNNs are hard to train because of the vanishing gradient problem. 

During backpropagation, error signals (gradients) from later time steps quickly become small, 

as they repeatedly go through nonlinear functions.

In more rare situations, it is also possible for the gradient to explode.



Intuition to solving the vanishing gradient
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Adapted from Dyer, LxMLS 2016.

x1 x2 x3 x4

h0

c1 c2 c3 c4
I I I

h1 h2 h3 h4

ci = ci-1 + f(xi) hi = g(ci)



Intuition to solving the vanishing gradient (2)
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Adapted from Dyer, LxMLS 2016.

x1 x2 x3 x4

h0

c1 c2 c3 c4
I I I

h1 h2 h3 h4

ci = ci-1 + f([xi;hi-1]) hi = g(ci)

Better gradient propagation is 
possible when you use additive 
rather than multiplicative/highly 
non-linear recurrent dynamics



Concrete RNN architectures: LSTM
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LSTM([ci-i; hi-1], xi) = [ci; hi]

ci = ci-1 ⨀ f + g ⨀ i

hi = tanh(ci) ⨀ o

i = ᶥ(xiW
xi + hi-1Whi) f = ᶥ(xiW

xf + hi-1Whf) o = ᶥ(xiW
xo + hi-1Who) g = tanh(xiW

xg + hi-1Whg)

xi ∈ ℝe ci, hi, i, f, o, g ∈ ℝd Wx. ∈ ℝe⨉d Wh. ∈ ℝd⨉d



LSTM
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Greff et al. (2015). LSTM: A Search Space Odyssey.



Encoder-Decoder
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Sutskever et al. (2014), Cho et al. (2014)

you know nothing jon snow

du vet ingenting jon snow



Encoder-Decoder Training
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Sutskever et al. (2014), Cho et al. (2014)
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Bidirectional RNN 
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Multi-layer RNN
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Adapted from Goldberg (2015)
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Encoder-decoder with Attention
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Bahdanau et al. (2015)
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Encoder-decoder with Attention
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Bahdanau et al. (2015)
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Encoder-decoder with Attention

30
Bahdanau et al. (2015)

you know nothing jon

du vet ingenting

snow



Encoder-decoder with Attention
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Bahdanau et al. (2015)

you know nothing jon

du vet ingenting jon

snow



Encoder-decoder with Attention
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Bahdanau et al. (2015)
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Unknown words
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Dealing with unknown words
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The softmax over the output layer is very expensive!

In practice we need to use a limited vocabulary, e.g. the top 50 000 words.

Infrequent words are now translated as “UNK” 

Not so ideal! What can we do about this?



One solution: Byte Pair Encoding
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Dictionary
5 l o w </w>
2 l o w e r </w>
6 n e w e s t </w>
3 w i d e s t </w>

Start with a vocabulary of characters

Repeat: replace each most frequent pair (‘A’, ‘B’) with a new symbol ‘AB’

Vocabulary
l, o, w, e, r, n, w, s, t, i, d

Adapted from Sennrich



One solution: Byte Pair Encoding
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Dictionary
5 l o w </w>
2 l o w e r </w>
6 n e w es t </w>
3 w i d es t </w>

Start with a vocabulary of characters

Repeat: replace each most frequent pair (‘A’, ‘B’) with a new symbol ‘AB’

Vocabulary
l, o, w, e, r, n, w, s, t, i, d, 
es

Add pair (e, s) with frequency 9

Adapted from Sennrich (2016) / ACL NMT



One solution: Byte Pair Encoding
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Dictionary
5 l o w </w>
2 l o w e r </w>
6 n e w est </w>
3 w i d est </w>

Start with a vocabulary of characters

Repeat: replace each most frequent pair (‘A’, ‘B’) with a new symbol ‘AB’

Vocabulary
l, o, w, e, r, n, w, s, t, i, d, 
es, est

Add pair (es, t) with frequency 9

Adapted from Sennrich (2016) / ACL NMT



One solution: Byte Pair Encoding
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Dictionary
5 lo w </w>
2 lo w e r </w>
6 n e w est </w>
3 w i d est </w>

Start with a vocabulary of characters

Repeat: replace each most frequent pair (‘A’, ‘B’) with a new symbol ‘AB’

Vocabulary
l, o, w, e, r, n, w, s, t, i, d, 
es, est, lo

Add pair (l, o) with frequency 7

Adapted from Sennrich (2016) / ACL NMT



Example: WMT17 English-Latvian
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source:
critics said the government funding described by the Los Angeles-based ...

  target: 
kritiķi apgalvo , ka 

Losandželosas 
metropoles 

ūdensapgādes pārvaldes ...

  target_bpe: 
krit@@ iķ@@ i apgalv@@ o , ka 

L@@ os@@ and@@ ž@@ el@@ os@@ as 
me@@ tr@@ op@@ ol@@ es 

ūden@@ sa@@ p@@ gād@@ es pārvaldes ...



Another solution: Character-based NMT
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Source: Lee et al. (2016). Fully Character-Level Neural Machine Translation without Explicit Segmentation.



Do we need to use RNNs?
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Convolutions instead of RNNs
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Gehring et al. (2017). Convolutional Sequence to Sequence Learning.
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