Neural Machine Translation

Joost Bastings
http://joost.ninja

Google Translate

Demo: Sampling from a neural conditional language model

Google Translate

Italian	Greek	German	Albanian - detected	-		+	Latvian	Catalan	English
	Greek alla allallalla allallalla allallalla allall	German alla allalla allallalla allallallalla allall	Albanian - detected alla allalla allallalla allallallalla allall		a alla allala allalla	×	With lin With so With so With so With so With so With so With so With so With so With so Saggin Stock p With a With a Saggin Stock p With a With a Saggin Stock p With a Saggin Stock p With a Saggin Stock p With a Saggin Stock p Saggin With a Saggin Stock p Saggin Stock p Saggin Saggi	catalan me oda edding ie sledding ie sled eds cushion ig ig ohotogra Sense C Sense C Sense C Sele Mu muddle almon eigh uddle	phy of It of It uddle
llallalla Ilallalla	allallalla allallalla	allallallalla allallallallalla	allallallallallallallal allallallallalla	ialialialiali Ialialialiali	allallallalla allallallallalla		From the sa	he muda Imon	l

Google Translate

Italian Greek German Finnish - detected -	English Spanish Arabic - Translate
iä iä iä	× I do not sleep
ia ia ia ia ia	I do not know
ia ia ia ia ia	I do not know
ia ia ia ia ia ia ia	And give it to you
ia ia ia ia ia ia ia ia	And give it to it
ia ia ia ia ia ia ia ia	And give it to them
ia	And give them leave
ia	And give them and give them
ia	And give them and give them
ia	And give them and give them
ia i	And give them and give them
ia i	
ia i	111111111111111111
ia i	landiiiiiiiiiii
ia i	landiiiiiiiiiiiii
la l	

today recap: RNNs encoder-decoder attention models dealing with unknown words

Recap: Matrix Multiplication

3x2

Recap: Activation functions

FFNN vs. RNN

Word embeddings

Where do they come from?

Random initialization (when enough training data) E.g. sample from uniform distribution [-0.01, 0.01]

Supervised pre-training

Train the embeddings first on another task for which you have more data

Unsupervised pre-training

Create your own supervised training instances, e.g. word2vec

The RNN abstraction

The RNN abstraction

Input:

a sequence of input vectors $\mathbf{x}_{i:j} = \mathbf{x}_{i'}, ..., \mathbf{x}_{j}$ initial state vector \mathbf{h}_0

Output:

a sequence of state vectors **h**₁, ..., **h**_n

 \mathbf{h}_{i} represents the state of the RNN after observing $\mathbf{x}_{1:i}$

Example:

a model for predicting the conditional prob. of an event e given the sequence $\mathbf{x}_{1:i}$ p(e = j | $\mathbf{x}_{1:j}$) = softmax($\mathbf{h}_i W + \mathbf{b}$)[j]

The RNN abstraction (2)

We have now defined a recursive function:

 $RNN(\mathbf{h}_{0}, \mathbf{x}_{1:n}) = \mathbf{h}_{1:n}$

 $\begin{aligned} \mathbf{h}_{i} &= R(\mathbf{h}_{i-1}, \mathbf{x}_{i}) & \text{Here, } \underline{R} \text{ is a function!} \\ \mathbf{x}_{i} &\in \mathbb{R}^{e} \\ \mathbf{h}_{i} &\in \mathbb{R}^{d} \end{aligned}$

- $\mathbf{h}_4 = R(\mathbf{h}_3, \mathbf{x}_4)$
 - $= R(R(\mathbf{h}_{2'}, \mathbf{x}_{3}), \mathbf{x}_{4})$
 - = $R(R(R(\mathbf{h}_1, \mathbf{x}_2), \mathbf{x}_3), \mathbf{x}_4)$
 - = $R(R(R(R(\mathbf{R}(\mathbf{h}_{0}, \mathbf{x}_{1}), \mathbf{x}_{2}), \mathbf{x}_{3}) \mathbf{x}_{4})$

During training we hope to set the parameters of R in such a way so that the states \mathbf{h}_{i} contain useful information for the prediction task.

The RNN abstraction (3)

Acceptor

observe final state \mathbf{h}_n and decide on an outcome, e.g. sentiment classification

Encoder

final state **h**_n is treated as an *encoding* of the information in the sequence, and is used as additional information together with other signals. e.g. extractive summarization

Transducer

produce an output for each input, e.g. language modeling

Encoder - Decoder

translation! final state \mathbf{h}_n is used as additional input to another RNN

Concrete RNN architectures: Simple RNN

 $RNN(\mathbf{h}_{0}, \mathbf{x}_{1:n}) = \mathbf{h}_{1:n}$

$$\mathbf{h}_{i} = R(\mathbf{h}_{i-1}, \mathbf{x}_{i}) = \phi(\mathbf{x}_{i} \mathbf{W} + \mathbf{h}_{i} \mathbf{U} + \mathbf{b})$$
$$\mathbf{x}_{i} \in \mathbb{R}^{e} \qquad \mathbf{h}_{i} \in \mathbb{R}^{d} \qquad \mathbf{W} \in \mathbb{R}^{e \times d} \quad \mathbf{U} \in \mathbb{R}^{d \times d} \quad \mathbf{b} \in \mathbb{R}^{d}$$

Training

Simple RNNs are hard to train because of the vanishing gradient problem.

During backpropagation, error signals (gradients) from later time steps quickly become small, as they repeatedly go through nonlinear functions.

In more rare situations, it is also possible for the gradient to **explode**.

Intuition to solving the vanishing gradient

Intuition to solving the vanishing gradient (2)

Better gradient propagation is possible when you use **additive** rather than multiplicative/highly non-linear recurrent dynamics

 $\mathbf{c}_{i} = \mathbf{c}_{i-1} + f([\mathbf{x}_{i};\mathbf{h}_{i-1}]) \qquad \mathbf{h}_{i} = g(\mathbf{c}_{i}) \qquad \frac{\delta \mathbf{c}_{i}}{\delta \mathbf{c}_{i-1}} = I + \epsilon$

Adapted from Dyer, LxMLS 2016.

Concrete RNN architectures: LSTM

$$LSTM([\mathbf{c}_{i,i}; \mathbf{h}_{i,1}], \mathbf{x}_{i}) = [\mathbf{c}_{i}; \mathbf{h}_{i}]$$

$$\mathbf{c}_{i} = \mathbf{c}_{i-1} \odot \mathbf{f} + \mathbf{g} \odot \mathbf{i}$$

$$\mathbf{h}_{i} = \tanh(\mathbf{c}_{i}) \odot \mathbf{o}$$

$$\mathbf{i} = \sigma(\mathbf{x}_{i}W^{xi} + \mathbf{h}_{i-1}W^{hi}) \qquad \mathbf{f} = \sigma(\mathbf{x}_{i}W^{xf} + \mathbf{h}_{i-1}W^{hf}) \qquad \mathbf{o} = \sigma(\mathbf{x}_{i}W^{xo} + \mathbf{h}_{i-1}W^{ho}) \qquad \mathbf{g} = \tanh(\mathbf{x}_{i}W^{xg} + \mathbf{h}_{i-1}W^{hg})$$

$$\mathbf{x}_{i} \in \mathbb{R}^{e} \qquad \mathbf{c}_{i'}, \mathbf{h}_{i'}, \mathbf{i}, \mathbf{f}, \mathbf{o}, \mathbf{g} \in \mathbb{R}^{d} \qquad W^{x.} \in \mathbb{R}^{exd} \quad W^{h.} \in \mathbb{R}^{dxd}$$

LSTM

Encoder-Decoder

Encoder-Decoder Training

Bidirectional RNN

Multi-layer RNN

Unknown words

The softmax over the output layer is very expensive!

In practice we need to use a limited vocabulary, e.g. the top 50 000 words.

Infrequent words are now translated as "UNK"

Not so ideal! What can we do about this?

Start with a vocabulary of characters

Repeat: replace each most frequent pair ('A', 'B') with a new symbol 'AB'

Dictionary 5 l o w </w> 2 l o w e r </w> 6 n e w e s t </w> 3 w i d e s t </w>

Vocabulary

,, w,,, w,, _, _, _, _,	l,	ο,	W,	e,	r,	n,	W,	s,	t,	i,	Ċ
-------------------------	----	----	----	----	----	----	----	----	----	----	---

Start with a vocabulary of characters

Repeat: replace each most frequent pair ('A', 'B') with a new symbol 'AB'

Dictionary

5 l o w </w>
2 l o w e r </w>
6 n e w es t </w>
3 w i d es t </w>

Vocabulary

l, o, w, e, r, n, w, s, t, i, d, es

Add pair (e, s) with frequency 9

Start with a vocabulary of characters

Repeat: replace each most frequent pair ('A', 'B') with a new symbol 'AB'

Dictionary

5 l o w </w>
2 l o w e r </w>
6 n e w est </w>
3 w i d est </w>

Vocabulary

l, o, w, e, r, n, w, s, t, i, d, es, est

Add pair (es, t) with frequency 9

Start with a vocabulary of characters

Repeat: replace each most frequent pair ('A', 'B') with a new symbol 'AB'

Dictionary

5 lo w </w>
2 lo w e r </w>
6 n e w est </w>
3 w i d est </w>

Vocabulary

l, o, w, e, r, n, w, s, t, i, d, es, est, lo

Add pair (I, o) with frequency 7

Example: WMT17 English-Latvian

source:

critics said the government funding described by the Los Angeles-based ...

target:

kritiķi apgalvo , ka Losandželosas metropoles ūdensapgādes pārvaldes ...

target_bpe:

krit@@ iķ@@ i apgalv@@ o , ka L@@ os@@ and@@ ž@@ el@@ os@@ as me@@ tr@@ op@@ ol@@ es ūden@@ sa@@ p@@ gād@@ es pārvaldes ...

Another solution: Character-based NMT

Do we need to use RNNs?

Convolutions instead of RNNs

References

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. "Sequence to sequence learning with neural networks." NIPS, 2014.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." ICLR, 2015. arXiv:1409.0473.