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Recap

We looked into Alignment a directional word-based model.
= Parametrisation: Categorical.
= Estimation techniques: EM vs VB.
We have not look into generation:
= No model of length
= No model of segmentation

= Bad model for translation



Introduction

Translation

Model:
P(E)P(F|E)
PE|F)= —f—~—~
(BIF) = =3
Prediction:
E = argmax P(E)P(F = f|E)
E
Estimation:
= P(E) n-gram LM.
= P(F|E) TM.



Word-based SMT

[Brown et al., 1993]

1 2 3 4
das Haus ist klein

the house is small
1 2 3 4

Figure: Koehn [2010]



Introduction

Limitations of word-based approach

Linguistically
= Can not translate many-to-one or many-to-many

= Compositionality of translation
multi-word / idiomatic expressions.

Computationally during prediction

= n! permutations in decoding.



Introduction

Phrase-based model

Change of units: phrase.

natuerlich| | hat | Jjohn| | spass am| | spiel
j Y \
of course| |john| | has | | fun with the| |game

Figure: Koehn [2010]
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Introduction

Phrase-based model

Phrase pairs as translation units
= Capture non-compositional translations.

= Exploit (local) reordering patterns.



Introduction

[[lustration

| have black eyes
1 J
2 ai
3 les
4 yeux
5 noirs
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Introduction

[[lustration

| have black eyes
1 s
2 ai
3 les
4 yeux
5 noirs
J'1 aig lesg yeuxy noirss input
[J'1 aig] [less yeuxy] [noirss] segmentation
[J'1 aig]y [noirss]s [less yeuxa]a ordering
[I have]; [black]s [eyes]a translation
Derivation

7/18



Modelling Derivations

_ exp(S@(e,d, f))
Ple.d|f) = Yoo oq exp(Se(e, d', f))



Modelling Derivations

B exp(59(67d7 f))
A = S S exp(E e, )

Challenging normalisation.
Large space of derivations:

= Number of segments.

= Number of permutations.

= Number of translations.
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Discriminative classifier

= Give up on marginalisation of d
= Give up on probabilistic modelling

= How?

If we look at the prediction:

é,d = arg maxlog P(e, d|f)
ed|f

= argmax Sy(e, d, f) 10gZZexp (Sp(e,d', f))
ed|f o

constant for any(e,d| f)

= argmax Sy(e, d, f)
ed|f

Trained discriminatively (e.g. structured perceptron).



Linear model

The score functionSy is defined as a linear model.

Sy(e,d, f) =0T H(e,d, f)

where 6 are parameters
h are feature functions.
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Linear model

The score functionSy is defined as a linear model.

Sy(e,d, f) =0T H(e,d, f)

where 6 are parameters
h are feature functions.
Linear model decomposes over phrases.

Sa(eadaf) ZGTZ hl(dl|evf)
i local feature function

Model featurises steps in the derivation independently.

10/18



PBSMT Model

= Feature functions n =3

= Translation feature function:
h1 = log P(fle)
= Language Model feature function:
ho = log P(elepast)

Distortion feature function:

hs = logd(starty —endi_1 — 1)

11/18
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Phrase pairs from word alignments
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Phrase pairs from word alignments

| have black eyes
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Phrase pairs from word alignments

| have black eyes
1 s N
2 ai )
3 les .
4 yeux
5 noirs \ \

= multiple derivations can explain an “observed” phrase pair

= we extract all of them once, irrespective of derivation

12/18



Phrase Table

= Goal: Learn phrase translation table from parallel corpus.
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Phrase Table

= Goal: Learn phrase translation table from parallel corpus.
= Three stages:

= Word alignment given IBM.

= Extraction of phrase pairs.

= Phrase scoring.

13/18



Phrase extraction

Let (f,€) be a phrase pair
Let A be an alignment matrix
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Model

Phrase extraction

Let (f,€) be a phrase pair
Let A be an alignment matrix

(f,€) consistent with A if, and only if:

= Words in f, if aligned, align only with words in &
C C

= Words in ¢, if aligned, align only with words in f
C C

et
et

= (f,e) must contain at least one alignment point
C |

3
|
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Feature Translation Model

Features -
log P(fle)
and

log P(elf)

Number of times a (consistent) phrase pair is “observed”

15/18



Feature Language Model

Feature n-gram language model

log P(elepast)

Estimated independently on monolingual data.

N = 1 :[This]is|a|sentence] unigrams: <

sentence

N = 2 :[This[is[a]sentence] bgrams: 52"

a sentence

N=3 |Th|5||5 a|Sentence| trigrams: S 2

is a sentence

http://recognize-speech.com/images/Antonio/Unigram.png



Translation Options

= Europarl phrase table: 2727 matching phrase pairs for a sentence.
= Search problem with beam search:

@ From phrase translation table for all input phrases.

@® Initial hypothesis: no input words covered, no output produced.

© Pick any translation option, create new hypothesis.

@ Expand hypotheses from created partial hypothesis.

@ Backtrack from highest scoring complete hypothesis.

17/18



Translation Options

er geht ja nicht nach hause
C he D) C 1S ) C yes ) C not ) (after ) (house )
¢ it ) ( are ) 1S ) (__donot ) C to ) (_home )
C , It ) (__goes ) (__,ofcourse ) (_doesnot ) (_accordingto ) (__chamber )
[¢ he ) C go ) ) (isnot ) C in D) (athome )
C itis ) C not ) C home )
C e will be ) C 1S not ) ( under house )
C it goes ) C does not ) C return home )
C he goes ) C do not ) C do not )
C is ) C to D]
are ) Tollowing D)
C is after al ) not after D)
C does ) C not o )
C not D)
C 1s not )
C are not )
C is nota )

Figure: Koehn [2010]
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Prediction

Decoding

er geht ja nicht nach hause

[TTT]1—Y

yes IEE
goes I:: home

does not go home

[LTTTT [TT1]
are

Figure: Koehn [2010]
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Questions?
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