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Introduction

Probability review
• The sample space is the set of all possible outcomes of the

experiment denoted by Ω.
For example, two successive coin tosses the sample space of {hh, tt,
ht, th}, where h heads and t tails.

• A event space is a set whose elements A ∈ F (called events) are
subsets of Ω (i.e., A ⊆ Ω is a collection of possible outcomes of an
experiment)

• Probability measure is a function P : F → <, we associate a number
P (A) that measures the probability or degree of belief that the event
will occur.

• satisfies the following properties:

• P (A) ≥ 0
• A1, A2, . . . are disjoint events (i.e. Ai ∩Aj = ∅ whenever i 6= j),

then
P (
⋃

i Ai) =
∑

i P (Ai)
• P (Ω) = 1
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Introduction

Example
Consider the event of tossing a six-sided die. The sample space is
Ω = {1, 2, 3, 4, 5, 6}.
We can define the simplest event space F = {∅,Ω}. Another event space
is the set of all subsets of Ω.
For the first event space, the probability measure is given by P (∅) = 0,
P (Ω) = 1.
For the second event space, one valid probability measure is to assign the
probability of each set in the event space to be i

6 where i is the number of
elements of that set; for example, P ({1, 2, 3, 4}) = 4

6 and P ({1, 2, 3}) = 3
6

2 / 33



PGM

Conditional probability

• Let B be an event with non-zero probability.
The conditional probability of any event A given B is defined as:

P (A | B) = P (A,B)
P (B) (1)

• P (A | B) is the probability measure of the event A after observing
the occurrence of event B.
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PGM

Chain rule
• Let S1, · · · , Sk be events, P (Si) > 0. Then the chain rule:

P (S1, S2, · · · , Sk)
=P (S1)P (S2|S1)P (S3|S2, S1) · P (Sk|S1, S2, ·Sk−1)

(2)

• With k = 2 events, this is the definition of conditional probability:

P (S1, S2) = P (S1)P (S2|S1) (3)

• In general, the chain rule is derived by applying the definition of
conditional probability multiple times, for example:

P (S1, S2, S3, S4)
=P (S1, S2, S3)P (S4 | S1, S2, S3)
=P (S1, S2)P (S3 | S1, S2)P (S4 | S1, S2, S3)
=P (S1)P (S2 | S1)P (S3 | S1, S2)P (S4 | S1, S2, S3)

(4)
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PGM

Independence

• Two events are called independent if and only if
P (A,B) = P (A)P (B), or P (A | B) = P (A)

• Thus, independence is equivalent to saying that observing B does not
have any effect on the probability of A

5 / 33
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PGM

Random variables

• We flip 10 coins, and we want to know the number of coins that
come up heads.
The sample space Ω are 10-length sequences of heads and tails. For
example, we might have ω0 = 〈H,H, T,H, T,H,H, T, T, T 〉 ∈ Ω.

• we care about real-valued functions of outcomes, the number of
heads that appear among our 10 tosses.
These functions are known as random variables.

• A random variable X is a function X : Ω→ <.
• We will denote random variables using upper case letters X
• We will denote the value that a random variable may take on using

lower case letters x.
Thus, X = x means that we are assigning the value x ∈ < to the
random variable X

6 / 33
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PGM

Cumulative distribution functions

• To specify the probability measures used with random variables, it is
convenient to specify alternative functions (CDFs, PDFs, and PMFs).

• A cumulative distribution function (CDF) is a function
FX : < → [0, 1] which specifies a probability measure as,

FX(x) = P (X ≤ x) (5)
• Properties:

0 ≤ FX(x) ≤ 1
lim

x→−∞
FX(x) = 0

lim
x→+∞

FX(x) = 1

x ≤ y → FX(x) ≤ FX(y)

(6)
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PGM

Probability mass functions

• When a random variable X takes on a finite set of possible values is a
discrete random variable

• A way to represent the probability measure associated with a random
variable is to directly specify the probability of each value that the
random variable can assume a probability mass function PMF is a
function

• pX : Ω→ < such that pX(x) = P (X = x)
• Properties:

0 ≤ pX(x) ≤ 1∑
x∈X

pX(x) = 1

∑
x∈A

pX(x) = P (X ∈ A)
(7)
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PGM

Probability density functions

• For some continuous random variables, the cumulative distribution
function FX(x) is differentiable everywhere.
In these cases, we define the Probability Density Function or PDF as
the derivative of the CDF

fX(x) = dFX(x)
dx

(8)

• Properties:
fX(x) ≥ 0∫ ∞

−∞
fX(x) = 1∫

x∈A
fX(x)dx = P (X ∈ A)

(9)
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PGM

Expectation

• X is a discrete random variable with PMF pX(x) and g : < → < is an
arbitrary function.

• In this case, g(X) can be considered a random variable, and we define
the expectation of g(X) as

E[g(X)] =
∑
x∈X

g(x)pX(x) (10)

• If X is a continuous random variable with PDF fX(x), then the
expected value of g(X) is defined as:

E[g(X)] =
∫ ∞
−∞

g(x)fX(x)dx (11)
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PGM

Expectation

• Intuitively, the expectation of g(X) can be thought of as a weighted
average of the values that g(x) can taken on for different values of x,
where the weights are given by pX(x)

• Properties:

E[a] = afor any constanta ∈ <
E[af(X)] = aE[f(X)]for any constanta ∈ <
Linearity of ExpectationE[f(X) + g(X)] = E[f(X)] + E[g(X)]

(12)
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PGM

Discrete random variables

• X ∼ Bernoulli(p) (where 0 ≤ p ≤ 1):
one if a coin with heads probability p comes up heads, zero otherwise

p(x) =
{
p, if x = 1.
1− p, if x = 0.

(13)

• X ∼ Binomial(n, p) (where 0 ≤ p ≤ 1):
the number of heads in n independent flips of a coin with heads
probability p

p =
(
n

x

)
· px(1− p)n−x (14)
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PGM

Discrete random variables

• X ∼ Geometric(p) (where p > 0):
the number of flips of a coin with heads probability p until the first
heads.

p(x) = p(1− p)x−1 (15)

• X ∼ Poisson(λ) (where λ > 0):
a probability distribution over the non-negative integers used for
modelling the frequency of rare events.

p(x) = e−λ
λx

x!
(16)
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PGM

Continuous random variables
• X ∼ Uniform(a, b) (where a < b):

equal probability density to every value between a and b on the real
line

f(x) =
{ 1
b−a , if a ≤ b
0, otherwise

(17)

• X ∼ Exponential(λ) (where λ > 0):
decaying probability density over the non-negative real

f(x) =
{
λe−λx, if x ≥ 0
0, otherwise

(18)

• X ∼ Normal(µ, σ2): also known as the Gaussian distribution

f(x) = 1√
2πσ

e−
(x−µ)2

2σ2 (19)
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PGM

Random variable example
• We cannot talk about the exact value of the random variable but we

can reason about it’s possible values

• We quantify the degree of belief we have in each outcome
• Uniform distribution: every outcome is equally likely

if n is the size of the set of possible outcomes the probability that x
takes on any value (e.g. a) is 1

n

p(x) = 1
n

for allx ∈ [a, b] (20)
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PGM

Random variable example
• A random variable is a function that maps from a sample space Ω to
<
x : Ω→ <

• Example: which pet do kids love the most?
Sample space: Ω = {bird, cat, dog}

x(ω) =


1 ω = bird

2 ω = cat

3 ω = dog

(21)

• if say x we mean the set of outcomes
ω : x(ω) = x which is called an event

• we call X the support of X

16 / 33
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Random variable example
• A Categorical variable can model 1 of k categories
x ∼ Cat(θ1, ..., θk)

• x = 1, ..., k
• the categorical parameter is a probability vector

0 ≤ θx ≤ 1forx ∈ [1, k]
k∑
x=1

θx = 1
(22)
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PGM

Sum rule and product rule

• p(x, y) is the joint distribution of two random variables x, y.

• product rule: p(x, y) = p(y | x)p(x)
• How does the joint PMF over two variables relate to the PMF for

each variable separately?
With the corresponding marginal distributions p(x) and p(y)

• We denote the sum rule as (also known as the marginalization
property):

p(x) =
{∑

y∈Y p(x, y), ifyis discrete∫
Y p(x, y)dy, ifyis continuous

(23)

• We sum out (or integrate out) the set of states y of the random
variable Y .
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PGM

Bayes’ rule

• To derive expressions for conditional probability Bayes’ rule

p(y | x)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(x | y)

prior︷︸︸︷
p(y)

p(x)︸︷︷︸
evidence

(24)
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• To derive expressions for conditional probability Bayes’ rule

• In the case of discrete random variables X and Y

p(y | x) = p(x, y)
p(x) = p(x | y)p(y)∑

y′∈Y p(x | y′)p(y′)
(25)

• If the random variables X and Y are continuous

f(y | x) = f(x, y)
fX(x) = f(x | y)f(y)∫∞

−∞ f(x | y′)f(y′)dy′ (26)
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PGM

Probabilistic modelling

• Representation
How to express a probability distribution that models some real-world
phenomenon?

• Inference
Given a probabilistic model, how do we obtain answers to relevant
questions about the world?
Querying the marginal or conditional probabilities of certain events of
interest.

• Learning
Goal of fitting a model given a dataset. The model can be then use
to make predictions about the future.
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PGM

Bayesian networks

• Directed graphical models are a family of probability distributions that
admit a compact parameterisation that can be described using a
directed graph.

• By the chain rule we can write any probability as:

p(x1, x2, ..., xn) = p(x1)p(x2 | x1) · · · p(xn | xn−1, ..., x2, x1). (27)

• A Bayesian network is a distribution in which each factor on the right
hand side depends only on a small number of ancestor variables xAi :

p(xi | xi−1, ..., x1) = p(xi | xAi) (28)
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PGM

Bayesian networks

• Distributions of this form can be naturally expressed as directed
acyclic graphs (DAG), in which vertices correspond to variables xi
and edges indicate dependency relationships.

Model of a student’s grade g on an exam. This grade depends on the
exam’s difficulty d and the student’s intelligence i it also affects the
quality l of the reference letter from the professor who taught the course.
The student’s intelligence i affects his SAT score s in addition to g. Each
variable is binary, except for g, which takes 3 possible values.
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Bayesian networks

p(l, g, i, d, s) = p(l | g)p(g | i, d)p(i)p(d)p(s | i) (29)
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Bayesian networks

• Bayesian network is a directed graph G = (V,E)

• Together with a random variable xi for each node i ∈ V
• One conditional probability distribution (CPD) conditioned on its

parents
p(xi | xAi)

• probability p factorizes over a DAG G if it can be decomposed into a
product of factors
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Bayesian networks

p(l, g, i, d, s) = p(l | g)p(g | i, d)p(i)p(d)p(s | i) (30)
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PGM

Probabilistic modelling

• Inference
Given a probabilistic model, how do we obtain answers to relevant
questions about the world?
Querying the marginal or conditional probabilities of certain events of
interest.

p(x1) =
∑
x2

∑
x3

...
∑
xn

p(x1, x2, x3, ..., xn) (31)
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Introduction word alignment

Word alignment
• IBM models assume that each word in the French sentence is a

translation of exactly zero or one word of the English sentence.

• The notation to refer to each word.
Let a French sentence f be represented by an array of m words,
〈f1, ..., fm〉,
and English sentence e be represented by an array of l words,
〈e1, ..., el〉

• IBM models decompose the joint probability of a sentence pair with
the chain rule as:

p(el1, fm1 ) = p(el1)︸ ︷︷ ︸
language model

× p(fm1 | el1)︸ ︷︷ ︸
translation model

(32)

• French words are conditionally independent given the English
sentence.

• Inference can be performed exactly.
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Introduction word alignment

Mixture models
• A mixture model consist of c mixture components, each defines a

distribution over the space X.

• Each component can specialise its distribution on a subset of the data.
• The probability of a mixture model with c components assigns to n

data point is denoted by:

p(xn1 ) =
n∏
i=1

c∑
j=1

p(xi, yi = j)

=
n∏
i=1

c∑
j=1

p(yi = j)p(xi | yi = j)
(33)

• We introduced the random variable yi that ranges over the mixture
components

30 / 33



Introduction word alignment

Mixture models
• A mixture model consist of c mixture components, each defines a

distribution over the space X.
• Each component can specialise its distribution on a subset of the data.

• The probability of a mixture model with c components assigns to n
data point is denoted by:

p(xn1 ) =
n∏
i=1

c∑
j=1

p(xi, yi = j)

=
n∏
i=1

c∑
j=1

p(yi = j)p(xi | yi = j)
(33)

• We introduced the random variable yi that ranges over the mixture
components

30 / 33



Introduction word alignment

Mixture models
• A mixture model consist of c mixture components, each defines a

distribution over the space X.
• Each component can specialise its distribution on a subset of the data.
• The probability of a mixture model with c components assigns to n

data point is denoted by:

p(xn1 ) =
n∏
i=1

c∑
j=1

p(xi, yi = j)

=
n∏
i=1

c∑
j=1

p(yi = j)p(xi | yi = j)
(33)

• We introduced the random variable yi that ranges over the mixture
components

30 / 33



Introduction word alignment

Mixture models
• A mixture model consist of c mixture components, each defines a

distribution over the space X.
• Each component can specialise its distribution on a subset of the data.
• The probability of a mixture model with c components assigns to n

data point is denoted by:

p(xn1 ) =
n∏
i=1

c∑
j=1

p(xi, yi = j)

=
n∏
i=1

c∑
j=1

p(yi = j)p(xi | yi = j)
(33)

• We introduced the random variable yi that ranges over the mixture
components

30 / 33



Introduction word alignment

Word Alignment

• Learn a conditional probabilistic model of a French sentence f given
an English sentence e,
which we denote as p(f |e).

• A dataset D of N sentence pairs that are known to be translations of
each other,
D = (f (1), e(1))...(f (N), e(N))

• Goal of our model will be to uncover the hidden word-to-word
correspondences in these translation pairs.

• We will learn the model from data, and use it to predict the existence
of the missing word alignments

31 / 33



Introduction word alignment

Word Alignment

• Learn a conditional probabilistic model of a French sentence f given
an English sentence e,
which we denote as p(f |e).

• A dataset D of N sentence pairs that are known to be translations of
each other,
D = (f (1), e(1))...(f (N), e(N))

• Goal of our model will be to uncover the hidden word-to-word
correspondences in these translation pairs.

• We will learn the model from data, and use it to predict the existence
of the missing word alignments

31 / 33



Introduction word alignment

Word Alignment

• Learn a conditional probabilistic model of a French sentence f given
an English sentence e,
which we denote as p(f |e).

• A dataset D of N sentence pairs that are known to be translations of
each other,
D = (f (1), e(1))...(f (N), e(N))

• Goal of our model will be to uncover the hidden word-to-word
correspondences in these translation pairs.

• We will learn the model from data, and use it to predict the existence
of the missing word alignments

31 / 33



Introduction word alignment

Word Alignment

• Learn a conditional probabilistic model of a French sentence f given
an English sentence e,
which we denote as p(f |e).

• A dataset D of N sentence pairs that are known to be translations of
each other,
D = (f (1), e(1))...(f (N), e(N))

• Goal of our model will be to uncover the hidden word-to-word
correspondences in these translation pairs.

• We will learn the model from data, and use it to predict the existence
of the missing word alignments

31 / 33



Introduction word alignment

Generative Process

• Generative process for the French sentence conditioned on the English
sentence:

1 Choose French sentence length m based on the English sentence length
l

2 For each French position j, choose the English position aj that it is
generated from

3 For each French position j, choose a French word based on the English
word in position aj

• The generative story introduces the alignment variable aj
It is an indicator for the mixture component that the French word in
position j is generated from

• The mixture components are English words
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IBM graphical model
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