Probabilistic Modelling

Miguel Rios

Universiteit van Amsterdam
April 4, 2019

Content

(1) Introduction
(2) PGM
(3) Introduction word alignment

Probability review

- The sample space is the set of all possible outcomes of the experiment denoted by Ω.
For example, two successive coin tosses the sample space of $\{\mathrm{hh}, \mathrm{tt}$, ht, th\}, where h heads and t tails.

Probability review

- The sample space is the set of all possible outcomes of the experiment denoted by Ω.
For example, two successive coin tosses the sample space of $\{\mathrm{hh}, \mathrm{tt}$, ht, th\}, where h heads and t tails.
- A event space is a set whose elements $A \in F$ (called events) are subsets of Ω (i.e., $A \subseteq \Omega$ is a collection of possible outcomes of an experiment)

Probability review

- The sample space is the set of all possible outcomes of the experiment denoted by Ω.
For example, two successive coin tosses the sample space of $\{\mathrm{hh}, \mathrm{tt}$, ht, th\}, where h heads and t tails.
- A event space is a set whose elements $A \in F$ (called events) are subsets of Ω (i.e., $A \subseteq \Omega$ is a collection of possible outcomes of an experiment)
- Probability measure is a function $P: F \rightarrow \Re$, we associate a number $P(A)$ that measures the probability or degree of belief that the event will occur.

Probability review

- The sample space is the set of all possible outcomes of the experiment denoted by Ω.
For example, two successive coin tosses the sample space of $\{\mathrm{hh}, \mathrm{tt}$, ht, th\}, where h heads and t tails.
- A event space is a set whose elements $A \in F$ (called events) are subsets of Ω (i.e., $A \subseteq \Omega$ is a collection of possible outcomes of an experiment)
- Probability measure is a function $P: F \rightarrow \Re$, we associate a number $P(A)$ that measures the probability or degree of belief that the event will occur.
- satisfies the following properties:

Probability review

- The sample space is the set of all possible outcomes of the experiment denoted by Ω.
For example, two successive coin tosses the sample space of $\{\mathrm{hh}, \mathrm{tt}$, ht, th\}, where h heads and t tails.
- A event space is a set whose elements $A \in F$ (called events) are subsets of Ω (i.e., $A \subseteq \Omega$ is a collection of possible outcomes of an experiment)
- Probability measure is a function $P: F \rightarrow \Re$, we associate a number $P(A)$ that measures the probability or degree of belief that the event will occur.
- satisfies the following properties:
- $P(A) \geq 0$

Probability review

- The sample space is the set of all possible outcomes of the experiment denoted by Ω.
For example, two successive coin tosses the sample space of $\{\mathrm{hh}, \mathrm{tt}$, ht, th\}, where h heads and t tails.
- A event space is a set whose elements $A \in F$ (called events) are subsets of Ω (i.e., $A \subseteq \Omega$ is a collection of possible outcomes of an experiment)
- Probability measure is a function $P: F \rightarrow \Re$, we associate a number $P(A)$ that measures the probability or degree of belief that the event will occur.
- satisfies the following properties:
- $P(A) \geq 0$
- A_{1}, A_{2}, \ldots are disjoint events (i.e. $A_{i} \cap A_{j}=\emptyset$ whenever $i \neq j$), then

$$
P\left(\bigcup_{i} A_{i}\right)=\sum_{i} P\left(A_{i}\right)
$$

Probability review

- The sample space is the set of all possible outcomes of the experiment denoted by Ω.
For example, two successive coin tosses the sample space of $\{\mathrm{hh}, \mathrm{tt}$, ht, th\}, where h heads and t tails.
- A event space is a set whose elements $A \in F$ (called events) are subsets of Ω (i.e., $A \subseteq \Omega$ is a collection of possible outcomes of an experiment)
- Probability measure is a function $P: F \rightarrow \Re$, we associate a number $P(A)$ that measures the probability or degree of belief that the event will occur.
- satisfies the following properties:
- $P(A) \geq 0$
- A_{1}, A_{2}, \ldots are disjoint events (i.e. $A_{i} \cap A_{j}=\emptyset$ whenever $i \neq j$), then
$P\left(\bigcup_{i} A_{i}\right)=\sum_{i} P\left(A_{i}\right)$
- $P(\Omega)=1$

Example

Consider the event of tossing a six-sided die. The sample space is $\Omega=\{1,2,3,4,5,6\}$.
We can define the simplest event space $F=\{\emptyset, \Omega\}$. Another event space is the set of all subsets of Ω.
For the first event space, the probability measure is given by $P(\emptyset)=0$, $P(\Omega)=1$.
For the second event space, one valid probability measure is to assign the probability of each set in the event space to be $\frac{i}{6}$ where i is the number of elements of that set; for example, $P(\{1,2,3,4\})=\frac{4}{6}$ and $P(\{1,2,3\})=\frac{3}{6}$

Conditional probability

- Let B be an event with non-zero probability. The conditional probability of any event A given B is defined as:

$$
\begin{equation*}
P(A \mid B)=\frac{P(A, B)}{P(B)} \tag{1}
\end{equation*}
$$

Conditional probability

- Let B be an event with non-zero probability. The conditional probability of any event A given B is defined as:

$$
\begin{equation*}
P(A \mid B)=\frac{P(A, B)}{P(B)} \tag{1}
\end{equation*}
$$

- $P(A \mid B)$ is the probability measure of the event A after observing the occurrence of event B.

Chain rule

- Let S_{1}, \cdots, S_{k} be events, $P\left(S_{i}\right)>0$. Then the chain rule:

$$
\begin{align*}
& P\left(S_{1}, S_{2}, \cdots, S_{k}\right) \\
= & P\left(S_{1}\right) P\left(S_{2} \mid S_{1}\right) P\left(S_{3} \mid S_{2}, S_{1}\right) \cdot P\left(S_{k} \mid S_{1}, S_{2}, \cdot S_{k-1}\right) \tag{2}
\end{align*}
$$

Chain rule

- Let S_{1}, \cdots, S_{k} be events, $P\left(S_{i}\right)>0$. Then the chain rule:

$$
\begin{align*}
& P\left(S_{1}, S_{2}, \cdots, S_{k}\right) \\
= & P\left(S_{1}\right) P\left(S_{2} \mid S_{1}\right) P\left(S_{3} \mid S_{2}, S_{1}\right) \cdot P\left(S_{k} \mid S_{1}, S_{2}, \cdot S_{k-1}\right) \tag{2}
\end{align*}
$$

- With $k=2$ events, this is the definition of conditional probability:

$$
\begin{equation*}
P\left(S_{1}, S_{2}\right)=P\left(S_{1}\right) P\left(S_{2} \mid S_{1}\right) \tag{3}
\end{equation*}
$$

Chain rule

- Let S_{1}, \cdots, S_{k} be events, $P\left(S_{i}\right)>0$. Then the chain rule:

$$
\begin{align*}
& P\left(S_{1}, S_{2}, \cdots, S_{k}\right) \tag{2}\\
= & P\left(S_{1}\right) P\left(S_{2} \mid S_{1}\right) P\left(S_{3} \mid S_{2}, S_{1}\right) \cdot P\left(S_{k} \mid S_{1}, S_{2}, \cdot S_{k-1}\right)
\end{align*}
$$

- With $k=2$ events, this is the definition of conditional probability:

$$
\begin{equation*}
P\left(S_{1}, S_{2}\right)=P\left(S_{1}\right) P\left(S_{2} \mid S_{1}\right) \tag{3}
\end{equation*}
$$

- In general, the chain rule is derived by applying the definition of conditional probability multiple times, for example:

$$
\begin{align*}
& P\left(S_{1}, S_{2}, S_{3}, S_{4}\right) \\
= & P\left(S_{1}, S_{2}, S_{3}\right) P\left(S_{4} \mid S_{1}, S_{2}, S_{3}\right) \tag{4}\\
= & P\left(S_{1}, S_{2}\right) P\left(S_{3} \mid S_{1}, S_{2}\right) P\left(S_{4} \mid S_{1}, S_{2}, S_{3}\right) \\
= & P\left(S_{1}\right) P\left(S_{2} \mid S_{1}\right) P\left(S_{3} \mid S_{1}, S_{2}\right) P\left(S_{4} \mid S_{1}, S_{2}, S_{3}\right)
\end{align*}
$$

Independence

- Two events are called independent if and only if $P(A, B)=P(A) P(B)$, or $P(A \mid B)=P(A)$

Independence

- Two events are called independent if and only if $P(A, B)=P(A) P(B)$, or $P(A \mid B)=P(A)$
- Thus, independence is equivalent to saying that observing B does not have any effect on the probability of A

Random variables

- We flip 10 coins, and we want to know the number of coins that come up heads.
The sample space Ω are 10 -length sequences of heads and tails. For example, we might have $\omega_{0}=\langle H, H, T, H, T, H, H, T, T, T\rangle \in \Omega$.

Random variables

- We flip 10 coins, and we want to know the number of coins that come up heads.
The sample space Ω are 10 -length sequences of heads and tails. For example, we might have $\omega_{0}=\langle H, H, T, H, T, H, H, T, T, T\rangle \in \Omega$.
- we care about real-valued functions of outcomes, the number of heads that appear among our 10 tosses.
These functions are known as random variables.

Random variables

- We flip 10 coins, and we want to know the number of coins that come up heads.
The sample space Ω are 10 -length sequences of heads and tails. For example, we might have $\omega_{0}=\langle H, H, T, H, T, H, H, T, T, T\rangle \in \Omega$.
- we care about real-valued functions of outcomes, the number of heads that appear among our 10 tosses.
These functions are known as random variables.
- A random variable X is a function $X: \Omega \rightarrow \Re$.

Random variables

- We flip 10 coins, and we want to know the number of coins that come up heads.
The sample space Ω are 10 -length sequences of heads and tails. For example, we might have $\omega_{0}=\langle H, H, T, H, T, H, H, T, T, T\rangle \in \Omega$.
- we care about real-valued functions of outcomes, the number of heads that appear among our 10 tosses.
These functions are known as random variables.
- A random variable X is a function $X: \Omega \rightarrow \Re$.
- We will denote random variables using upper case letters X

Random variables

- We flip 10 coins, and we want to know the number of coins that come up heads.
The sample space Ω are 10 -length sequences of heads and tails. For example, we might have $\omega_{0}=\langle H, H, T, H, T, H, H, T, T, T\rangle \in \Omega$.
- we care about real-valued functions of outcomes, the number of heads that appear among our 10 tosses.
These functions are known as random variables.
- A random variable X is a function $X: \Omega \rightarrow \Re$.
- We will denote random variables using upper case letters X
- We will denote the value that a random variable may take on using lower case letters x.
Thus, $X=x$ means that we are assigning the value $x \in \Re$ to the random variable X

Cumulative distribution functions

- To specify the probability measures used with random variables, it is convenient to specify alternative functions (CDFs, PDFs, and PMFs).

Cumulative distribution functions

- To specify the probability measures used with random variables, it is convenient to specify alternative functions (CDFs, PDFs, and PMFs).
- A cumulative distribution function (CDF) is a function $F_{X}: \Re \rightarrow[0,1]$ which specifies a probability measure as,

$$
\begin{equation*}
F_{X}(x)=P(X \leq x) \tag{5}
\end{equation*}
$$

Cumulative distribution functions

- To specify the probability measures used with random variables, it is convenient to specify alternative functions (CDFs, PDFs, and PMFs).
- A cumulative distribution function (CDF) is a function $F_{X}: \Re \rightarrow[0,1]$ which specifies a probability measure as,

$$
\begin{equation*}
F_{X}(x)=P(X \leq x) \tag{5}
\end{equation*}
$$

- Properties:

$$
\begin{align*}
& 0 \leq F_{X}(x) \leq 1 \\
& \lim _{x \rightarrow-\infty} F_{X}(x)=0 \tag{6}\\
& \lim _{x \rightarrow+\infty} F_{X}(x)=1 \\
& x \leq y \rightarrow F_{X}(x) \leq F_{X}(y)
\end{align*}
$$

Probability mass functions

- When a random variable X takes on a finite set of possible values is a discrete random variable

Probability mass functions

- When a random variable X takes on a finite set of possible values is a discrete random variable
- A way to represent the probability measure associated with a random variable is to directly specify the probability of each value that the random variable can assume a probability mass function PMF is a function

Probability mass functions

- When a random variable X takes on a finite set of possible values is a discrete random variable
- A way to represent the probability measure associated with a random variable is to directly specify the probability of each value that the random variable can assume a probability mass function PMF is a function
- $p_{X}: \Omega \rightarrow \Re$ such that $p_{X}(x)=P(X=x)$

Probability mass functions

- When a random variable X takes on a finite set of possible values is a discrete random variable
- A way to represent the probability measure associated with a random variable is to directly specify the probability of each value that the random variable can assume a probability mass function PMF is a function
- $p_{X}: \Omega \rightarrow \Re$ such that $p_{X}(x)=P(X=x)$
- Properties:

$$
\begin{align*}
0 \leq p_{X}(x) & \leq 1 \\
\sum_{x \in X} p_{X}(x) & =1 \tag{7}\\
\sum_{x \in A} p_{X}(x) & =P(X \in A)
\end{align*}
$$

Probability density functions

- For some continuous random variables, the cumulative distribution function $F_{X}(x)$ is differentiable everywhere. In these cases, we define the Probability Density Function or PDF as the derivative of the CDF

$$
\begin{equation*}
f_{X}(x)=\frac{d F_{X}(x)}{d x} \tag{8}
\end{equation*}
$$

Probability density functions

- For some continuous random variables, the cumulative distribution function $F_{X}(x)$ is differentiable everywhere. In these cases, we define the Probability Density Function or PDF as the derivative of the CDF

$$
\begin{equation*}
f_{X}(x)=\frac{d F_{X}(x)}{d x} \tag{8}
\end{equation*}
$$

- Properties:

$$
\begin{align*}
f_{X}(x) & \geq 0 \\
\int_{-\infty}^{\infty} f_{X}(x) & =1 \tag{9}\\
\int_{x \in A} f_{X}(x) d x & =P(X \in A)
\end{align*}
$$

Expectation

- X is a discrete random variable with PMF $p_{X}(x)$ and $g: \Re \rightarrow \Re$ is an arbitrary function.

Expectation

- X is a discrete random variable with PMF $p_{X}(x)$ and $g: \Re \rightarrow \Re$ is an arbitrary function.
- In this case, $g(X)$ can be considered a random variable, and we define the expectation of $g(X)$ as

$$
\begin{equation*}
\mathbb{E}[g(X)]=\sum_{x \in X} g(x) p_{X}(x) \tag{10}
\end{equation*}
$$

Expectation

- X is a discrete random variable with PMF $p_{X}(x)$ and $g: \Re \rightarrow \Re$ is an arbitrary function.
- In this case, $g(X)$ can be considered a random variable, and we define the expectation of $g(X)$ as

$$
\begin{equation*}
\mathbb{E}[g(X)]=\sum_{x \in X} g(x) p_{X}(x) \tag{10}
\end{equation*}
$$

- If X is a continuous random variable with PDF $f_{X}(x)$, then the expected value of $g(X)$ is defined as:

$$
\begin{equation*}
\mathbb{E}[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x \tag{11}
\end{equation*}
$$

Expectation

- Intuitively, the expectation of $g(X)$ can be thought of as a weighted average of the values that $g(x)$ can taken on for different values of x, where the weights are given by $p_{X}(x)$

Expectation

- Intuitively, the expectation of $g(X)$ can be thought of as a weighted average of the values that $g(x)$ can taken on for different values of x, where the weights are given by $p_{X}(x)$
- Properties:

$$
\begin{aligned}
& \mathbb{E}[a]=a \text { for any constant } a \in \Re \\
& \mathbb{E}[a f(X)]=a \mathbb{E}[f(X)] \text { for any constant } a \in \Re
\end{aligned}
$$

Linearity of Expectation $\mathbb{E}[f(X)+g(X)]=\mathbb{E}[f(X)]+\mathbb{E}[g(X)]$

Discrete random variables

- $X \sim \operatorname{Bernoulli}(p)$ (where $0 \leq p \leq 1)$: one if a coin with heads probability p comes up heads, zero otherwise

$$
p(x)= \begin{cases}p, & \text { if } x=1 \tag{13}\\ 1-p, & \text { if } x=0\end{cases}
$$

Discrete random variables

- $X \sim \operatorname{Bernoulli}(p)$ (where $0 \leq p \leq 1)$: one if a coin with heads probability p comes up heads, zero otherwise

$$
p(x)= \begin{cases}p, & \text { if } x=1 \tag{13}\\ 1-p, & \text { if } x=0\end{cases}
$$

- $X \sim \operatorname{Binomial}(n, p)($ where $0 \leq p \leq 1)$: the number of heads in n independent flips of a coin with heads probability p

$$
\begin{equation*}
p=\binom{n}{x} \cdot p^{x}(1-p)^{n-x} \tag{14}
\end{equation*}
$$

Discrete random variables

- $X \sim \operatorname{Geometric}(p)$ (where $p>0)$: the number of flips of a coin with heads probability p until the first heads.

$$
\begin{equation*}
p(x)=p(1-p)^{x-1} \tag{15}
\end{equation*}
$$

Discrete random variables

- $X \sim \operatorname{Geometric}(p)$ (where $p>0)$: the number of flips of a coin with heads probability p until the first heads.

$$
\begin{equation*}
p(x)=p(1-p)^{x-1} \tag{15}
\end{equation*}
$$

- $X \sim \operatorname{Poisson}(\lambda)$ (where $\lambda>0$):
a probability distribution over the non-negative integers used for modelling the frequency of rare events.

$$
\begin{equation*}
p(x)=e^{-\lambda} \frac{\lambda^{x}}{x!} \tag{16}
\end{equation*}
$$

Continuous random variables

- $X \sim \operatorname{Uniform}(a, b)$ (where $a<b$):
equal probability density to every value between a and b on the real line

$$
f(x)= \begin{cases}\frac{1}{b-a}, & \text { if } a \leq b \tag{17}\\ 0, & \text { otherwise }\end{cases}
$$

Continuous random variables

- $X \sim$ Uniform (a, b) (where $a<b$): equal probability density to every value between a and b on the real line

$$
f(x)= \begin{cases}\frac{1}{b-a}, & \text { if } a \leq b \tag{17}\\ 0, & \text { otherwise }\end{cases}
$$

- $X \sim \operatorname{Exponential}(\lambda)($ where $\lambda>0)$: decaying probability density over the non-negative real

$$
f(x)= \begin{cases}\lambda e^{-\lambda x}, & \text { if } x \geq 0 \tag{18}\\ 0, & \text { otherwise }\end{cases}
$$

Continuous random variables

- $X \sim$ Uniform (a, b) (where $a<b$):
equal probability density to every value between a and b on the real line

$$
f(x)= \begin{cases}\frac{1}{b-a}, & \text { if } a \leq b \tag{17}\\ 0, & \text { otherwise }\end{cases}
$$

- $X \sim \operatorname{Exponential}(\lambda)($ where $\lambda>0)$: decaying probability density over the non-negative real

$$
f(x)= \begin{cases}\lambda e^{-\lambda x}, & \text { if } x \geq 0 \tag{18}\\ 0, & \text { otherwise }\end{cases}
$$

- $X \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$: also known as the Gaussian distribution

$$
\begin{equation*}
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \tag{19}
\end{equation*}
$$

Random variable example

- We cannot talk about the exact value of the random variable but we can reason about it's possible values

Random variable example

- We cannot talk about the exact value of the random variable but we can reason about it's possible values
- We quantify the degree of belief we have in each outcome

Random variable example

- We cannot talk about the exact value of the random variable but we can reason about it's possible values
- We quantify the degree of belief we have in each outcome
- Uniform distribution: every outcome is equally likely
if n is the size of the set of possible outcomes the probability that x takes on any value (e.g. a) is $\frac{1}{n}$

$$
\begin{equation*}
p(x)=\frac{1}{n} \text { for all } x \in[a, b] \tag{20}
\end{equation*}
$$

Random variable example

- A random variable is a function that maps from a sample space Ω to凡
$x: \Omega \rightarrow \Re$

Random variable example

- A random variable is a function that maps from a sample space Ω to \Re
$x: \Omega \rightarrow \Re$
- Example: which pet do kids love the most?

Sample space: $\Omega=\{$ bird, cat, dog $\}$

$$
x(\omega)= \begin{cases}1 & \omega=b i r d \tag{21}\\ 2 & \omega=c a t \\ 3 & \omega=d o g\end{cases}
$$

Random variable example

- A random variable is a function that maps from a sample space Ω to \Re
$x: \Omega \rightarrow \Re$
- Example: which pet do kids love the most?

Sample space: $\Omega=\{$ bird, cat, dog $\}$

$$
x(\omega)= \begin{cases}1 & \omega=\text { bird } \tag{21}\\ 2 & \omega=c a t \\ 3 & \omega=d o g\end{cases}
$$

- if say x we mean the set of outcomes $\omega: x(\omega)=x$ which is called an event

Random variable example

- A random variable is a function that maps from a sample space Ω to \Re
$x: \Omega \rightarrow \Re$
- Example: which pet do kids love the most?

Sample space: $\Omega=\{$ bird, cat, dog $\}$

$$
x(\omega)= \begin{cases}1 & \omega=\text { bird } \tag{21}\\ 2 & \omega=c a t \\ 3 & \omega=d o g\end{cases}
$$

- if say x we mean the set of outcomes $\omega: x(\omega)=x$ which is called an event
- we call \mathcal{X} the support of X

Random variable example

- A Categorical variable can model 1 of k categories $x \sim \operatorname{Cat}\left(\theta_{1}, \ldots, \theta_{k}\right)$

Random variable example

- A Categorical variable can model 1 of k categories $x \sim \operatorname{Cat}\left(\theta_{1}, \ldots, \theta_{k}\right)$
- $x=1, \ldots, k$

Random variable example

- A Categorical variable can model 1 of k categories $x \sim \operatorname{Cat}\left(\theta_{1}, \ldots, \theta_{k}\right)$
- $x=1, \ldots, k$
- the categorical parameter is a probability vector

$$
\begin{align*}
& 0 \leq \theta_{x} \leq 1 \text { for } x \in[1, k] \\
& \sum_{x=1}^{k} \theta_{x}=1 \tag{22}
\end{align*}
$$

Sum rule and product rule

- $p(x, y)$ is the joint distribution of two random variables x, y.

Sum rule and product rule

- $p(x, y)$ is the joint distribution of two random variables x, y.
- product rule: $p(x, y)=p(y \mid x) p(x)$

Sum rule and product rule

- $p(x, y)$ is the joint distribution of two random variables x, y.
- product rule: $p(x, y)=p(y \mid x) p(x)$
- How does the joint PMF over two variables relate to the PMF for each variable separately? With the corresponding marginal distributions $p(x)$ and $p(y)$

Sum rule and product rule

- $p(x, y)$ is the joint distribution of two random variables x, y.
- product rule: $p(x, y)=p(y \mid x) p(x)$
- How does the joint PMF over two variables relate to the PMF for each variable separately? With the corresponding marginal distributions $p(x)$ and $p(y)$
- We denote the sum rule as (also known as the marginalization property):

$$
p(x)= \begin{cases}\sum_{y \in Y} p(x, y), & \text { if } y \text { is discrete } \tag{23}\\ \int_{Y} p(x, y) d y, & \text { if } y \text { is continuous }\end{cases}
$$

Sum rule and product rule

- $p(x, y)$ is the joint distribution of two random variables x, y.
- product rule: $p(x, y)=p(y \mid x) p(x)$
- How does the joint PMF over two variables relate to the PMF for each variable separately? With the corresponding marginal distributions $p(x)$ and $p(y)$
- We denote the sum rule as (also known as the marginalization property):

$$
p(x)= \begin{cases}\sum_{y \in Y} p(x, y), & \text { if } y \text { is discrete } \tag{23}\\ \int_{Y} p(x, y) d y, & \text { if } y \text { is continuous }\end{cases}
$$

- We sum out (or integrate out) the set of states y of the random variable Y.

Bayes' rule

- To derive expressions for conditional probability Bayes' rule

$$
\underbrace{p(y \mid x)}_{\text {posterior }}=\frac{\overbrace{p(x \mid y)}^{\text {likelihood }} \overbrace{p(y)}^{\text {prior }}}{\underbrace{p(x)}_{\text {evidence }}}
$$

Bayes' rule

- To derive expressions for conditional probability Bayes' rule

Bayes' rule

- To derive expressions for conditional probability Bayes' rule
- In the case of discrete random variables X and Y

$$
\begin{equation*}
p(y \mid x)=\frac{p(x, y)}{p(x)}=\frac{p(x \mid y) p(y)}{\sum_{y^{\prime} \in Y} p\left(x \mid y^{\prime}\right) p\left(y^{\prime}\right)} \tag{25}
\end{equation*}
$$

Bayes' rule

- To derive expressions for conditional probability Bayes' rule
- In the case of discrete random variables X and Y

$$
\begin{equation*}
p(y \mid x)=\frac{p(x, y)}{p(x)}=\frac{p(x \mid y) p(y)}{\sum_{y^{\prime} \in Y} p\left(x \mid y^{\prime}\right) p\left(y^{\prime}\right)} \tag{25}
\end{equation*}
$$

- If the random variables X and Y are continuous

$$
\begin{equation*}
f(y \mid x)=\frac{f(x, y)}{f_{X}(x)}=\frac{f(x \mid y) f(y)}{\int_{-\infty}^{\infty} f\left(x \mid y^{\prime}\right) f\left(y^{\prime}\right) d y^{\prime}} \tag{26}
\end{equation*}
$$

Probabilistic modelling

- Representation

How to express a probability distribution that models some real-world phenomenon?

Probabilistic modelling

- Representation

How to express a probability distribution that models some real-world phenomenon?

- Inference

Given a probabilistic model, how do we obtain answers to relevant questions about the world?
Querying the marginal or conditional probabilities of certain events of interest.

Probabilistic modelling

- Representation

How to express a probability distribution that models some real-world phenomenon?

- Inference

Given a probabilistic model, how do we obtain answers to relevant questions about the world?
Querying the marginal or conditional probabilities of certain events of interest.

- Learning

Goal of fitting a model given a dataset. The model can be then use to make predictions about the future.

Bayesian networks

- Directed graphical models are a family of probability distributions that admit a compact parameterisation that can be described using a directed graph.

Bayesian networks

- Directed graphical models are a family of probability distributions that admit a compact parameterisation that can be described using a directed graph.
- By the chain rule we can write any probability as:

$$
\begin{equation*}
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) \cdots p\left(x_{n} \mid x_{n-1}, \ldots, x_{2}, x_{1}\right) \tag{27}
\end{equation*}
$$

Bayesian networks

- Directed graphical models are a family of probability distributions that admit a compact parameterisation that can be described using a directed graph.
- By the chain rule we can write any probability as:

$$
\begin{equation*}
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) \cdots p\left(x_{n} \mid x_{n-1}, \ldots, x_{2}, x_{1}\right) \tag{27}
\end{equation*}
$$

- A Bayesian network is a distribution in which each factor on the right hand side depends only on a small number of ancestor variables $x_{A_{i}}$:

$$
\begin{equation*}
p\left(x_{i} \mid x_{i-1}, \ldots, x_{1}\right)=p\left(x_{i} \mid x_{A_{i}}\right) \tag{28}
\end{equation*}
$$

Bayesian networks

- Distributions of this form can be naturally expressed as directed acyclic graphs (DAG), in which vertices correspond to variables x_{i} and edges indicate dependency relationships.

Bayesian networks

- Distributions of this form can be naturally expressed as directed acyclic graphs (DAG), in which vertices correspond to variables x_{i} and edges indicate dependency relationships.

Model of a student's grade g on an exam. This grade depends on the exam's difficulty d and the student's intelligence i it also affects the quality l of the reference letter from the professor who taught the course. The student's intelligence i affects his SAT score s in addition to g. Each variable is binary, except for g, which takes 3 possible values.

Bayesian networks

Bayesian networks

- Bayesian network is a directed graph $G=(V, E)$

Bayesian networks

- Bayesian network is a directed graph $G=(V, E)$
- Together with a random variable x_{i} for each node $i \in V$

Bayesian networks

- Bayesian network is a directed graph $G=(V, E)$
- Together with a random variable x_{i} for each node $i \in V$
- One conditional probability distribution (CPD) conditioned on its parents $p\left(x_{i} \mid x_{A_{i}}\right)$

Bayesian networks

- Bayesian network is a directed graph $G=(V, E)$
- Together with a random variable x_{i} for each node $i \in V$
- One conditional probability distribution (CPD) conditioned on its parents $p\left(x_{i} \mid x_{A_{i}}\right)$
- probability p factorizes over a DAG G if it can be decomposed into a product of factors

Bayesian networks

Bayesian networks

Probabilistic modelling

- Inference

Given a probabilistic model, how do we obtain answers to relevant questions about the world?
Querying the marginal or conditional probabilities of certain events of interest.

$$
\begin{equation*}
p\left(x_{1}\right)=\sum_{x_{2}} \sum_{x_{3}} \ldots \sum_{x_{n}} p\left(x_{1}, x_{2}, x 3, \ldots, x_{n}\right) \tag{31}
\end{equation*}
$$

Word alignment

- IBM models assume that each word in the French sentence is a translation of exactly zero or one word of the English sentence.

Word alignment

- IBM models assume that each word in the French sentence is a translation of exactly zero or one word of the English sentence.
- The notation to refer to each word.

Let a French sentence f be represented by an array of m words, $\left\langle f_{1}, \ldots, f_{m}\right\rangle$,
and English sentence e be represented by an array of l words, $\left\langle e_{1}, \ldots, e_{l}\right\rangle$

Word alignment

- IBM models assume that each word in the French sentence is a translation of exactly zero or one word of the English sentence.
- The notation to refer to each word.

Let a French sentence f be represented by an array of m words, $\left\langle f_{1}, \ldots, f_{m}\right\rangle$,
and English sentence e be represented by an array of l words, $\left\langle e_{1}, \ldots, e_{l}\right\rangle$

- IBM models decompose the joint probability of a sentence pair with the chain rule as:

$$
\begin{equation*}
p\left(e_{1}^{l}, f_{1}^{m}\right)=\underbrace{p\left(e_{1}^{l}\right)}_{\text {language model }} \times \underbrace{p\left(f_{1}^{m} \mid e_{1}^{l}\right)}_{\text {translation model }} \tag{32}
\end{equation*}
$$

Word alignment

- IBM models assume that each word in the French sentence is a translation of exactly zero or one word of the English sentence.
- The notation to refer to each word.

Let a French sentence f be represented by an array of m words, $\left\langle f_{1}, \ldots, f_{m}\right\rangle$,
and English sentence e be represented by an array of l words, $\left\langle e_{1}, \ldots, e_{l}\right\rangle$

- IBM models decompose the joint probability of a sentence pair with the chain rule as:

$$
\begin{equation*}
p\left(e_{1}^{l}, f_{1}^{m}\right)=\underbrace{p\left(e_{1}^{l}\right)}_{\text {language model }} \times \underbrace{p\left(f_{1}^{m} \mid e_{1}^{l}\right)}_{\text {translation model }} \tag{32}
\end{equation*}
$$

- French words are conditionally independent given the English sentence.

Word alignment

- IBM models assume that each word in the French sentence is a translation of exactly zero or one word of the English sentence.
- The notation to refer to each word.

Let a French sentence f be represented by an array of m words, $\left\langle f_{1}, \ldots, f_{m}\right\rangle$,
and English sentence e be represented by an array of l words, $\left\langle e_{1}, \ldots, e_{l}\right\rangle$

- IBM models decompose the joint probability of a sentence pair with the chain rule as:

$$
\begin{equation*}
p\left(e_{1}^{l}, f_{1}^{m}\right)=\underbrace{p\left(e_{1}^{l}\right)}_{\text {language model }} \times \underbrace{p\left(f_{1}^{m} \mid e_{1}^{l}\right)}_{\text {translation model }} \tag{32}
\end{equation*}
$$

- French words are conditionally independent given the English sentence.
- Inference can be performed exactly.

Mixture models

- A mixture model consist of c mixture components, each defines a distribution over the space X.

Mixture models

- A mixture model consist of c mixture components, each defines a distribution over the space X.
- Each component can specialise its distribution on a subset of the data.

Mixture models

- A mixture model consist of c mixture components, each defines a distribution over the space X.
- Each component can specialise its distribution on a subset of the data.
- The probability of a mixture model with c components assigns to n data point is denoted by:

$$
\begin{align*}
p\left(x_{1}^{n}\right) & =\prod_{i=1}^{n} \sum_{j=1}^{c} p\left(x_{i}, y_{i}=j\right) \tag{33}\\
& =\prod_{i=1}^{n} \sum_{j=1}^{c} p\left(y_{i}=j\right) p\left(x_{i} \mid y_{i}=j\right)
\end{align*}
$$

Mixture models

- A mixture model consist of c mixture components, each defines a distribution over the space X.
- Each component can specialise its distribution on a subset of the data.
- The probability of a mixture model with c components assigns to n data point is denoted by:

$$
\begin{align*}
p\left(x_{1}^{n}\right) & =\prod_{i=1}^{n} \sum_{j=1}^{c} p\left(x_{i}, y_{i}=j\right) \tag{33}\\
& =\prod_{i=1}^{n} \sum_{j=1}^{c} p\left(y_{i}=j\right) p\left(x_{i} \mid y_{i}=j\right)
\end{align*}
$$

- We introduced the random variable y_{i} that ranges over the mixture components

Word Alignment

- Learn a conditional probabilistic model of a French sentence f given an English sentence e, which we denote as $p(f \mid e)$.

Word Alignment

- Learn a conditional probabilistic model of a French sentence f given an English sentence e, which we denote as $p(f \mid e)$.
- A dataset D of N sentence pairs that are known to be translations of each other,

$$
D=\left(f^{(1)}, e^{(1)}\right) \ldots\left(f^{(N)}, e^{(N)}\right)
$$

Word Alignment

- Learn a conditional probabilistic model of a French sentence f given an English sentence e, which we denote as $p(f \mid e)$.
- A dataset D of N sentence pairs that are known to be translations of each other, $D=\left(f^{(1)}, e^{(1)}\right) \ldots\left(f^{(N)}, e^{(N)}\right)$
- Goal of our model will be to uncover the hidden word-to-word correspondences in these translation pairs.

Word Alignment

- Learn a conditional probabilistic model of a French sentence f given an English sentence e, which we denote as $p(f \mid e)$.
- A dataset D of N sentence pairs that are known to be translations of each other, $D=\left(f^{(1)}, e^{(1)}\right) \ldots\left(f^{(N)}, e^{(N)}\right)$
- Goal of our model will be to uncover the hidden word-to-word correspondences in these translation pairs.
- We will learn the model from data, and use it to predict the existence of the missing word alignments

Generative Process

- Generative process for the French sentence conditioned on the English sentence:

Generative Process

- Generative process for the French sentence conditioned on the English sentence:
(1) Choose French sentence length m based on the English sentence length l

Generative Process

- Generative process for the French sentence conditioned on the English sentence:
(1) Choose French sentence length m based on the English sentence length l
(2) For each French position j, choose the English position a_{j} that it is generated from

Generative Process

- Generative process for the French sentence conditioned on the English sentence:
(1) Choose French sentence length m based on the English sentence length l
(2) For each French position j, choose the English position a_{j} that it is generated from
(3) For each French position j, choose a French word based on the English word in position a_{j}

Generative Process

- Generative process for the French sentence conditioned on the English sentence:
(1) Choose French sentence length m based on the English sentence length l
(2) For each French position j, choose the English position a_{j} that it is generated from
(3) For each French position j, choose a French word based on the English word in position a_{j}
- The generative story introduces the alignment variable a_{j} It is an indicator for the mixture component that the French word in position j is generated from

Generative Process

- Generative process for the French sentence conditioned on the English sentence:
(1) Choose French sentence length m based on the English sentence length l
(2) For each French position j, choose the English position a_{j} that it is generated from
(3) For each French position j, choose a French word based on the English word in position a_{j}
- The generative story introduces the alignment variable a_{j} It is an indicator for the mixture component that the French word in position j is generated from
- The mixture components are English words

IBM graphical model

Questions?

References I

