
  

Reordering Grammar

Miloš Stanojević



  

PETs as a representation of 
reordering patterns

We've already seen few papers that 
use ITG for preordering (Tromble 
and Eisner, Neubig ...).

ITG as a representation of 
reordering has few restructions:
- only permutation
- only binarizable permutations

We try to solve this two problems 
with:
- permutation trees
- minimal phrases

Just like previous models we are 
making a parsing model which 
predicts these “reordering trees” 
before translation.



  

PETs as a representation of 
reordering patterns

Let's pretend this is a standard 
parsing task.

How would we learn a parsing 
model?

Would it be good enough?

What could be potential problems?



  

PETs as a representation of 
reordering patterns

Let's pretend this is a standard 
parsing task.

How would we learn a parsing 
model?

Would it be good enough?

What could be potential problems?
● Labels are too abstract

● Lexicalization
● Label splitting

● Many PETs per permutation
● In training we have 

(exponentially) many trees per 
permutation

● In testing we need to sum over 
many trees per permutation



  

Inducing Reordering Grammar

● We could see that this is an unsupervised (or at 
least partially supervised) task:
– We don't know exact trees from which to learn but 

just have constraints of what are not possible trees

– We know how do we reorder but we don't know the 
cause (no linguistic cues). We need to find these 
more specific labels that explain the “cause”



  

Let's talk about
Latent Variable parsing

● Why do it?
– Labels that are visible are actually not specific enough. For example:

● There is a difference between NP subject and NP object
● a subject NP is 8.7 times more likely than an object NP to expand as just a pronoun

– In our case this problem is even more extreme: instead of labels like NP we 
have <1,2> and <2,1> which hide behind themself the reason why they are 
doing that operation for example

● <2,1> could mean 
– “I am doing inversion because on this span there is a verb phrase” or it could also be
– “I am doing inversion because on this span there is a subject”...

● Which one is right? We don't know, but we know that these kinds of things exist and 
they are hidden

● That's why we create <2,1>1 and <2,1>2



  

Let's talk about
Latent Variable parsing

● How is it done?
– EM (Expectation Maximization)

– In standard setting we collect counts and then minimize

– Because counts are hidden we instead collect expected 
counts and normalize them (for several iterations)

– So if we have only two trees T1 and T2 with probability 
0.1 and 0.2 which contain some rule what would be the 
expected count of that rule?



  

Summing all trees

● Tricky part is how to sum over all trees of which there could be 
exponentially many

● We use dynamic programming – Inside-Outside



  

Our case vs. monolingual parsing

● In monolingual 
parsing we know the 
bracketing while in 
our case even that is 
uncertain

● Luckily Inside-Outside 
easily covers this 
case too



  

Ok, so we split the non-terminals
Is that all?

● Let's say we have a rule
● P2413 ->  P12  P21  P12  P21
● And we split every non-terminal.
● What could be the problem?
● Imagine we split every non-terminal into 30 new 

non-terminals.



  

“Unarization”

30+302*5 =4530306 = 729000000



  

Some details

● We convert alignments to permutations by 
using minimal phrases where necessary

● Rare words (count<3) are replaced with 
“UNKNOWN” token

● Unaligned words make use of operator P01 and 
P10



  

Now that we have a grammar how 
do we decode?

● Standard CKY+ to build the chart of all trees
● We can do Viterbi to get the best tree.

– Is that a good idea?

● We want to find a permutation with highest probability and not the 
derivation with highest probability

● For computing the probability of permutation we want to sum:
– Over all non-terminals

– Over all bracketings

● that produce the same permutation
● Exact solution is NP-complete.

– What can we do to approximate it?



  

Sampling

● We sample lots of trees (10000) and then compute their 
probability by relative frequency

● Problem: space is huuuuge so most of the trees appear 
only once which makes distribution unreliable

● Still, the distribution says something
● If by sampling we get these three permutations what can 

we guess from them:
– 4 3 2 1 6 5

– 4 2 3 1 6 5

– 3 2 4 1 5 6



  

We incorporate 
this “similarity” in our decision rule

● Instead of taking the most probable permutation we take “the least risky one” under some 
loss (or similarity) function

● Used very often in many 
structure prediction tasks 
(for example machine 
translation with BLEU loss)

● Imagine we have n samples of permutations. Length of each permutation is k. What is the 
complexity of this algorithm if our loss function is Kendall tau?



  

Fast MBR with linear loss

What is the complexity now?



  

Results with English-Japanese



  

Results with English-Japanese



  

How does it compare to other work 
we've seen before?



  

How does it compare to other work 
we've seen before?

● Does not have two steps bud does everything in one go:
– Predict the brackets (tree structure)

– Predict the labels on the tree

● Does not pick only one tree but considers them all trees both during training and 
during testing

● It is fully probabilistic (no perceptrons and similar stuff)
● Uses no syntax (unlike Dyer) and captures syntactically non-isomorphic 

reordering patterns
● Can capture non-ITG reorderings
● Basically standard parsing (use can extend it with all the standard stuff you might 

use in parsing).
● Suggestions on how it could be improved?
● Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

