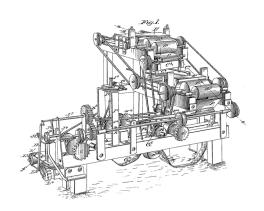
# Word representations and modelling ambiguity: A case study of metaphor

#### **Ekaterina Shutova**

ILLC University of Amsterdam 2 May 2018

# Polysemy and word senses

The children ran to the store
If you see this man, run!
Service runs all the way to Cranbury
She is running a relief operation in Sudan
the story or argument runs as follows
Does this old car still run well?
Interest rates run from 5 to 10 percent
Who's running for treasurer this year?
They ran the tapes over and over again
These dresses run small


# **Polysemy**

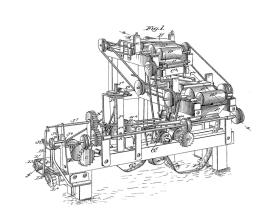
- homonymy: unrelated word senses. bank (raised land) vs bank (financial institution)
- bank (financial institution) vs bank (in a casino): related but distinct senses.
- regular polysemy and sense extension
  - zero-derivation, e.g. tango (N) vs tango (V), or rabbit, turkey, halibut (meat / animal)
  - metaphorical senses, e.g. swallow [food], swallow [information], swallow [anger]
  - metonymy, e.g. he played Bach; he drank his glass.
- vagueness: nurse, lecturer, driver
- cultural stereotypes: nurse, lecturer, driver

No clearcut distinctions.

Dictionaries are not consistent.

# What is metaphor?




# What is metaphor?

"A political machine"

"The wheels of the regime were well oiled and already turning"

"Time to mend our foreign policy"

"20 Steps towards a Modern, Working Democracy"



### How does it work?

Conceptual Metaphor Theory (Lakoff and Johnson, 1980)



Metaphorical associations between concepts

POLITICALSYSTEM is a MECHANISM

target

source

Cross-domain knowledge projection and inference

Reasoning about the target domain in terms of the properties of the source

# Computational metaphor processing tasks

Learn metaphorical associations from corpora

"POLITICAL SYSTEM is a MECHANISM"

Identify metaphorical language in text

"mend the policy"

Interpret the metaphorical language

"mend the policy" means "improve the policy; address the downsides of the policy"

| N: game     | N: politics   |
|-------------|---------------|
| 1170 play   | 31 dominate   |
| 202 win     | 30 play       |
| 99 miss     | 28 enter      |
| 76 watch    | 16 discuss    |
| 66 lose     | 13 leave      |
| 63 start    | 12 understand |
| 42 enjoy    | 8 study       |
| 22 finish   | 6 explain     |
|             | 5 shape       |
| 20 dominate | 4 influence   |
| 18 quit     | 4 change      |
| 17 host     | 4 analyse     |
| 17 follow   |               |
| 17 control  | 2 transform   |
|             |               |

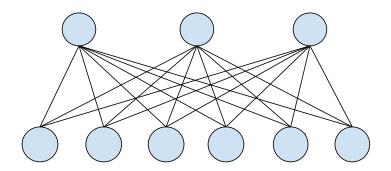
| N: game          | N: politics   |
|------------------|---------------|
| 1170 <b>play</b> | 31 dominate   |
| 202 win          | 30 play       |
| 99 miss          | 28 enter      |
| 76 watch         | 16 discuss    |
| 66 lose          | 13 leave      |
| 63 start         | 12 understand |
| 42 enjoy         | 8 study       |
| 22 finish        | 6 explain     |
|                  | 5 shape       |
| 20 dominate      | 4 influence   |
| 18 quit          | 4 change      |
| 17 host          | 4 analyse     |
| 17 follow        |               |
| 17 control       | 2 transform   |
|                  |               |

| N: game     | N: politics   |
|-------------|---------------|
| 1170 play   | 31 dominate   |
| 202 win     | 30 play       |
| 99 miss     | 28 enter      |
| 76 watch    | 16 discuss    |
| 66 lose     | 13 leave      |
| 63 start    | 12 understand |
| 42 enjoy    | 8 study       |
| 22 finish   | 6 explain     |
|             | 5 shape       |
| 20 dominate | 4 influence   |
| 18 quit     | 4 change      |
| 17 host     | 4 analyse     |
| 17 follow   |               |
| 17 control  | 2 transform   |
|             |               |

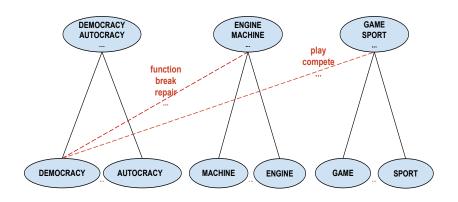
| N: game     | N: politics   |
|-------------|---------------|
| 1170 play   | 31 dominate   |
| 202 win     | 30 play       |
| 99 miss     | 28 enter      |
| 76 watch    | 16 discuss    |
| 66 lose     | 13 leave      |
| 63 start    | 12 understand |
| 42 enjoy    | 8 study       |
| 22 finish   | 6 explain     |
|             | 5 shape       |
| 20 dominate | 4 influence   |
| 18 quit     | 4 change      |
| 17 host     | 4 analyse     |
| 17 follow   | ···           |
| 17 control  | 2 transform   |
|             |               |

| N: game     | N: politics   |
|-------------|---------------|
| 1170 play   | 31 dominate   |
| 202 win     | 30 play       |
| 99 miss     | 28 enter      |
| 76 watch    | 16 discuss    |
| 66 lose     | 13 leave      |
| 63 start    | 12 understand |
| 42 enjoy    | 8 study       |
| 22 finish   | 6 explain     |
|             | 5 shape       |
| 20 dominate | 4 influence   |
| 18 quit     | 4 change      |
| 17 host     | 4 analyse     |
| 17 follow   |               |
| 17 control  | 2 transform   |
|             |               |

| N: game     | N: politics   |
|-------------|---------------|
| 1170 play   | 31 dominate   |
| 202 win     | 30 play       |
| 99 miss     | 28 enter      |
| 76 watch    | 16 discuss    |
| 66 lose     | 13 leave      |
| 63 start    | 12 understand |
| 42 enjoy    | 8 study       |
| 22 finish   | 6 explain     |
|             | 5 shape       |
| 20 dominate | 4 influence   |
| 18 quit     | 4 change      |
| 17 host     | 4 analyse     |
| 17 follow   |               |
| 17 control  | 2 transform   |
|             |               |


| N: game          | N: politics   |
|------------------|---------------|
| 1170 <b>play</b> | 31 dominate   |
| 202 <b>win</b>   | 30 play       |
| 99 miss          | 28 enter      |
| 76 watch         | 16 discuss    |
| 66 <b>lose</b>   | 13 leave      |
| 63 start         | 12 understand |
| 42 enjoy         | 8 study       |
| 22 finish        | 6 explain     |
|                  | 5 shape       |
| 20 dominate      | 4 influence   |
| 18 quit          | 4 change      |
| 17 host          | 4 analyse     |
| 17 follow        |               |
| 17 control       | 2 transform   |
|                  |               |

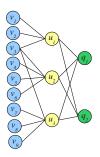
| N: game          | N: politics   |
|------------------|---------------|
| 1170 <b>play</b> | 31 dominate   |
| 202 win          | 30 play       |
| 99 miss          | 28 enter      |
| 76 watch         | 16 discuss    |
| 66 <b>lose</b>   | 13 leave      |
| 63 start         | 12 understand |
| 42 enjoy         | 8 study       |
| 22 finish        | 6 explain     |
|                  | 5 shape       |
| 20 dominate      | 4 influence   |
| 18 quit          | 4 change      |
| 17 host          | 4 analyse     |
| 17 follow        |               |
| 17 control       | 2 transform   |
|                  |               |


## NEED TO FIND A WAY TO PARTITION THE SPACE

# Learning metaphorical associations by soft clustering

Unsupervised Metaphor Identification Using Hierarchical Graph Factorization Clustering. Shutova and Sun, 2013. NAACL.

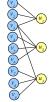



# Learning metaphorical associations by soft clustering



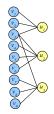
# Creating the graph

## Experimental setup


- ALGORITHM: Hierarchical graph factorization clustering (Yu, Yu, Tresp, 2006)
- DATASET: 2000 frequent nouns
- FEATURES: verbs in subject, direct and indirect object relations (Gigaword corpus)
- LEVELS: 10






Similarity matrix W:  $w_{ij} = JSD(v_i, v_j)$ 

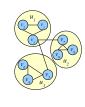




Similarity matrix W:  $w_{ij} = JSD(v_i, v_j)$ 





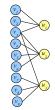

Similarity matrix W:  $w_{ij} = JSD(v_i, v_j)$ 

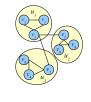
$$W'$$
:  $w'_{ij} = \sum_{p=1}^{m} rac{b_{ip}b_{jp}}{\lambda_p}$ 

$$\lambda_i = \sum_{i=1}^n b_{ip}$$









Similarity matrix W:  $w_{ij} = JSD(v_i, v_j)$ 

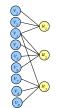
$$W'$$
:  $w'_{ij} = \sum_{p=1}^{m} rac{b_{ip}b_{jp}}{\lambda_p}$ 

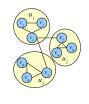
$$\lambda_i = \sum_{i=1}^n b_{ip}$$



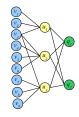








Similarity matrix W:  $w_{ij} = JSD(v_i, v_j)$ 

$$W'$$
:  $w'_{ij} = \sum_{p=1}^{m} rac{b_{ip}b_{jp}}{\lambda_p}$ 


$$\lambda_i = \sum_{i=1}^n b_{ip}$$












Similarity matrix W:  $w_{ij} = JSD(v_i, v_j)$ 

$$W'$$
:  $w'_{ij} = \sum_{p=1}^{m} rac{b_{ip}b_{jp}}{\lambda_p}$ 

$$\lambda_i = \sum_{i=1}^n b_{ip}$$

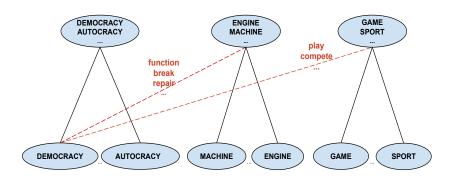
# Identifying metaphorical associations in the graph

- start with the source concept, e.g. "fire"
- output a ranking of potential target concepts

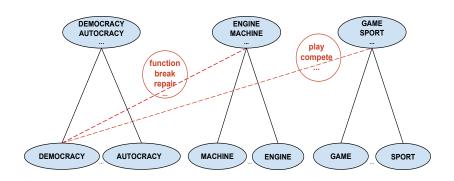


#### SOURCE: fire

TARGET: sense hatred emotion passion enthusiasm sentiment hope interest **feeling** resentment optimism hostility excitement anger TARGET: coup **violence** fight resistance clash rebellion battle drive fighting


riot revolt war confrontation volcano row revolution struggle

#### SOURCE: disease


TARGET: fraud outbreak offence connection leak count **crime** violation abuse conspiracy corruption terrorism suicide

TARGET: opponent critic rival

# Identifying metaphorical expressions



# Identifying metaphorical expressions



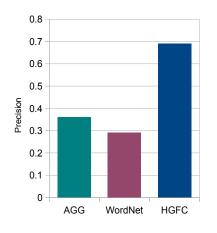
# Metaphorical expressions retrieved

#### FEELING IS FIRE

anger blazed passion flared fuel resentment anger crackled etc.

#### CRIME IS A DISEASE

cure crime abuse transmitted suffer from corruption diagnose abuse etc.


## Output sentences from the BNC

EG0 275 In the 1930s the words "means test" was a curse, **fuelling the resistance** against it both among the unemployed and some of its administrators.

HL3 1206 [..] he would strive to **accelerate progress** towards the economic integration of the Caribbean.

HXJ 121 [..] it is likely that some **industries will flourish** in certain countries as the **market widens**.

## How well does it work?



# Multilingual metaphor processing (Shutova et al. 2017, Computational Linguistics)

Cross-cultural differences

Spanish: poverty metaphors POVERTY IS AN ENEMY, PAIN

English: immigration metaphors IMMIGRATION IS A DISEASE, FIRE

Russian: sporting events / competitions associated with WAR

tions associated with WAIT