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Feature Norms

concepts are represented by features...

● Short descriptions of typical attributes for words
○ Visual Appearance
○ Function or Purpose
○ Location

○ Relationships



Feature Norms (continued)

❖ Human Subjects Ratings

❖ Useful insight into human concept acquisition
❖ Expensive to produce
❖ Available for small set of nouns
❖ No finite list of features that can be produced for a given concept.



Feature Norms (continued)

SHRIMP CUCUMBER DRESS

is edible, 19 a vegetable, 25 clothing, 21
is small, 17 eaten in salads, 24 worn by women, 15

lives in water, 12 is green, 23 is feminine, 10
is pink, 11 is long, 15 is formal, 10

tastes good, 9 eaten as pickles, 12 is long, 10
has a shell, 8 has skin, 9 different styles, 9

lives in oceans, 8 grows in gardens, 7 made of material, 9

Table 1: Examples of features and production frequencies for concepts from the McRae norms

Walde (2013), the authors construct a three-way multimodal model, integrating textual, feature and vi-
sual modalities. However, this method is restricted to the same disadvantages of feature norm datasets.
There have been some attempts at automatically generating feature norms using large text corpora (Kelly
et al., 2014; Baroni et al., 2010; Barbu, 2008) but the generated features are often a production of care-
fully crafted rules and statistical distribution of words in text rather than a proxy for human conceptual
knowledge. Our work focuses on predicting features for new concepts, by learning a mapping from
a distributional semantic space based solely on linguistic input to a more cognitively-sound semantic
space where feature norms are seen as a proxy for perceptual information. A precedent for this work has
been set in Johns and Jones (2012), but whilst they predict feature representations through global lexical
similarity, we infer them through learning a cross-modal mapping.

2 Mapping between semantic spaces

The integration of perceptual and linguistic information is supported by a large body of work in the
cognitive science literature (Riordan and Jones, 2011; Andrews et al., 2009) that shows that models that
include both types of information perform better at fitting human semantic data.

The idea of learning a mapping between semantic spaces appears in previous work; for example
Lazaridou et al. (2014) learn a cross-modal mapping between text and images and Mikolov et al. (2013)
show that a linear mapping between vector spaces of different languages can be learned by only relying
on a small amount of bilingual information from which missing dictionary entries can be inferred. Fol-
lowing the approach in Mikolov et al. (2013), we learn a linear mapping between the distributional space
and the feature-based space.

2.1 Feature norm datasets

One of the largest and most widely used feature-norm datasets is from McRae et al. (2005). Participants
were asked to produce a list of features for a given concept, whilst being encouraged to write down
different kinds of properties, e.g. how the concept feels, smells or for what it is used (Table 1). The dataset
contains a total of 2526 features for 541 concrete concepts, with a mean of 13.7 features per concept.
More recently, Devereux et al. (2013) collected semantic properties for 638 concrete concepts in a similar
fashion. There are also other property norms datasets which contain verbs and nouns referring to events
(Vinson and Vigliocco, 2008). Since the semantic property norms in the McRae dataset have been used
extensively in the literature as a proxy for perceptual information, we will report our experimental results
on this dataset.

2.2 Semantic spaces

A feature-based semantic space (FS) can be represented in a similar way to the co-occurrence based
distributional models. Concepts are treated as target words, features as context words and co-occurrence
counts are replaced with production frequencies, i.e. the number of participants that produced the feature
for a given concept (Table 2). We build two such feature-based semantic spaces: one using all the 2526
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v One of the largest and most widely used feature-norm datasets is from McRae et al. 
(2005)

Ø from approximately 725 participants for 541 living (dog) and nonliving (chair) basic-level 
concepts



Automatic Computation of Feature Norms

❖ From distributional semantics to feature norms (L. Fagarasan et al.)
❖ Feature-based semantic space à FS
❖ Co-occurance based distributional modelsàDS

❖ Learn a function to map the two semantic spaces: f: FS à DS

has fur has wheels an animal a pet
cat FS 22 0 21 17

dog black book animal
cat DS 4516 3124 1500 2480

Table 2: Example representation of CAT in the feature-based and distributional spaces

features in the McRae dataset as contexts (FS1) and one obtained by reducing the dimensions of FS1 to
300 using SVD (FS2).

For the distributional spaces (DS), we experimented with various parameter settings, and built four
spaces using Wikipedia as a corpus and sentence-like windows together with the following parameters:

• DS1: contexts are the top 10K most frequent content words in Wikipedia, values are raw co-
occurrence counts.

• DS2: same contexts as DS1, counts are re-weighted using PPMI and normalised as detailed in
Polajnar and Clark (2014).

• DS3: perform SVD to 300 dimensions on DS2.

• DS4: same as DS3 but with row normalisation performed after dimensionality reduction.

We also use the context-predicting vectors available as part of the word2vec1 project (Mikolov et al.,
2013) (DS5). These vectors are 300 dimensional and are trained on a Google News dataset (100 billion
words).

2.3 The mapping function

Our goal is to learn a function f : DS! FS that maps a distributional vector for a concept to its feature-
based vector. Following Mikolov et al. (2013), we learn the mapping as a linear relationship between
the distributional representation of a word and its featural representation. We estimate the coefficients
of the function using (multivariate) partial least squares regression (PLSR) as implemented in the R pls
package (Mevik and Wehrens, 2007), with the latent dimension parameter of PLSR set to 50.

3 Experimental results

We performed all experiments using a training set of 400 randomly selected McRae concepts and a test
set of the remaining 138.2 We use the featural representations of the concepts in the training set in order
to learn a mapping between the two spaces, and the featural representations of the concepts in the test set
as gold-standard vectors in order to analyse the quality of the learned transformation.

For each item in the test set, we computed the concept’s predicted vector, f(~x), by applying the
learned mapping, f , to the concept’s representation in DS, ~x. We then retrieved the top neighbours
of the predicted vector in FS using cosine similarity. We were interested in observing, for a given
concept, whether the gold-standard featural vector was retrieved in the topN neighbours of the predicted
featural vector. Results averaged over the entire test set are summarised in Table 3. We also report the
performance of a random baseline (RAND), where a concept’s nearest neighbours are randomly ranked,
and we note that our model outperforms chance by a large margin.

For the experiments in which the feature space dimensions are interpretable, i.e. not reduced (FS1),
we also report the MAP (Mean Average Precision). This allows us to measure the learnt mapping’s
ability to assign higher values to the gold features of a McRae concept (those properties that have a non-
zero production frequency for a particular concept in the McRae dataset) than to the non-gold features.

1https://code.google.com/p/word2vec/
2Out of the 541 McRae concepts, we discarded three (AXE, ARMOUR and DUNEBUGGY) because they were not available in

the pre-trained word2vec vectors.
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From distributional semantics to feature norms (L. 
Fagarasan et al.)
● DS1: contexts are the top 10K most frequent content words in Wikipedia, values are 

raw co- occurrence counts. 
● DS2: same contexts as DS1, counts are re-weighted using PPMI and normalized as 

detailed in Polajnar and Clark (2014). 
● DS3: perform SVD to 300 dimensions on DS2.
● DS4: same as DS3 but with row normalization performed after dimensionality 

reduction. 
● DS5: word2vec (300d)



From distributional semantics to feature norms (L. 
Fagarasan et al.)

DS FS top1 top5 top10 top20 MAP
RAND - 0.37 0.74 1.85 3.70 -
DS1 FS1 0.72 14.49 29.71 49.28 0.30
DS2 FS1 2.90 12.32 23.91 47.10 0.29
DS3 FS1 2.90 13.04 24.64 49.28 0.37
DS3 FS2 2.17 15.22 26.09 50.00 -
DS4 FS2 3.62 15.22 25.36 49.28 -
DS5 FS1 1.45 14.49 24.64 44.20 0.29
DS5 FS2 1.45 19.57 26.09 46.38 -

Table 3: Percentage (%) of test items that retrieve their gold-standard vector in the topN neighbours of
their predicted vector.

Word Nearest neighbours of predicted vector Result Top weighted predicted features
JAR bucket, strainer, pot, spatula not top20 made of plastic, is round*, made of metal, found in kitchens*
JEANS shawl, shirt, blouse, sweater not top20 clothing, different colours, worn by women*
BUGGY skateboard, truck, scooter, cart in top20 has wheels, made of wood*, is large*, used for transportation
SEAWEED shrimp, perch, trout, salmon in top20 is edible, lives in water*, is green, swims*, is small*
HORSE cow, ox, sheep, donkey in top10 an animal, has 4 legs, is large, has legs, lives on farms
PLATYPUS otter, salamander, turtle, walrus in top10 an animal, is small*, lives in water, is long*,
SPARROW starling, finch, partridge, sparrow in top5 a bird, flies, has feathers, has a beak, has wings
SPATULA strainer, spatula, grater, colander in top5 made of metal, found in kitchens, made of plastic
HATCHET hatchet, machete, sword, dagger in top1 made of metal, is sharp, has a handle, a tool, a weapon*
GUN gun, rifle, bazooka, shotgun in top1 used for killing, a weapon, made of metal, is dangerous

Table 4: Qualitative analysis of predicted vectors (obtained by mapping from DS3 to FS1) for 10 concepts
in the test set. Features annotated with an asterix(*) are not listed in the gold standard feature vector for
the given concepts.

We compute the MAP score as follows: for each concept in the test set, we rank the features from the
predicted feature vector in terms of their values, and measure the quality of this ranking with IR-based
average precision, using the gold-standard feature set as the “relevant” feature set. The MAP score is
then obtained by taking the mean average precision over the entire test set. Overall, the model seems to
rank gold features highly, but the MAP score is certainly affected by the features which have not been
seen in training (these account for 18.8% of the total number of features), because these will have a zero
weight assigned to them, and so will be found at the end of the ranked feature list for that concept.

A qualitative evaluation of the top neighbours for predicted featural vectors can be found in Table
4. Overall, the mapping results look promising, even for items that do not list the gold feature vector
as one of the top neighbours. However, overall the mapping looks too coarse. One reason could be the
fact that the feature-based space is relatively sparse (the maximum number of features for a concept is
26, whereas there are over 2500 dimensions in the space). The reason why, for example, the predicted
vector for JAR does not contain its gold standard in the top 20 neighbours might simply be that there are
not enough discriminating features for the model to learn that a jar usually has a lid and a bucket does
not; or that jeans are worn on the lower body, as opposed to shawls which are worn on the shoulders. It
is important to note that a production frequency of zero for a concept-feature pair in the McRae dataset
does not necessarily mean that the feature is not a plausible property of the concept, but only that it is
not one of the most salient features, since it was not produced by any of the human participants (e.g. the
feature has_teeth has not been listed as a property of CAT in the McRae dataset, but it is clearly a
plausible property of the CAT concept). Many of the top-predicted features for the concepts in the test
set are plausible, even if they are not listed in the gold data (e.g lives_in_water for SEAWEED).
This is yet another indication that the concept-feature pairs listed in the McRae dataset are not complete,
meaning that there are salient features that apply to some concepts which have not been spelled out by
the participants.
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From distributional semantics to feature norms (L. 
Fagarasan et al.)
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Semantic Organization in the Human Brain

❖ Region Based
➢ certain categories (such as faces and body parts) are strongly represented in discrete, 

highly localized regions of cortex
❖ Distributed

➢  certain categories (such as household objects) are represented by distributed patterns 
of activity



A Continuous Semantic Space Describes the Representation of Thousands of 
Object and Action Categories across the Human Brain (A. G. Huth et al.) 

v Humans can see and name thousands of distinct object and action categories, so it is unlikely that each 
category is represented in a distinct brain area. 

v fMRI: measure human brain activity evoked by natural movies

Ø fMRI measures brain activity by detecting changes associated with blood flow. This technique relies on the fact that 
cerebral blood flow and neuronal activation are coupled.

v Build voxel wise models: examine the cortical representation of 1,705 object and action categories

Ø Each voxel can represent a million or so brain cells.



2011) to characterize the response of each voxel to each of the

1,705 object and action categories (Figure 1). The linear regres-

sion procedure produced a set of 1,705 model weights for each

individual voxel, reflecting how each object and action category

influences BOLD responses in each voxel.

RESULTS

Category Selectivity for Individual Voxels

Our modeling procedure produces detailed information about

the representation of categories in each individual voxel in the

brain. Figure 2A shows the category selectivity for one voxel

located in the left parahippocampal place area (PPA) of subject

A.V. The model for this voxel shows that BOLD responses are

strongly enhanced by categories associated with man-made

objects and structures (e.g., ‘‘building,’’ ‘‘road,’’ ‘‘vehicle,’’ and

‘‘furniture’’), weakly enhanced by categories associated with

outdoor scenes (e.g., ‘‘hill,’’ ‘‘grassland,’’ and ‘‘geological forma-

tion’’) and humans (e.g., ‘‘person’’ and ‘‘athlete’’), and weakly

suppressed by nonhuman biological categories (e.g., ‘‘body

parts’’ and ‘‘birds’’). This result is consistent with previous

reports that PPA most strongly represents information about

outdoor scenes and buildings (Epstein and Kanwisher, 1998).

Figure 2B shows category selectivity for a second voxel

located in the right precuneus (PrCu) of subject A.V. The model

shows that BOLD responses are strongly enhanced by

categories associated with social settings (e.g., people, commu-

nication verbs, and rooms) and suppressed by many other

categories (e.g., ‘‘building,’’ ‘‘city,’’ ‘‘geological formation,’’ and

‘‘atmospheric phenomenon’’). This result is consistent with an

earlier finding that PrCu is involved in processing social scenes

(Iacoboni et al., 2004).

A Semantic Space for Representation of Object and

Action Categories

We used principal components analysis (PCA) to recover a

semantic space from the category model weights in each

subject. PCA ensures that categories that are represented by

similar sets of cortical voxels will project to nearby points in the

estimated semantic space, while categories that are represented

very differently will project to different points in the space. To

maximize the quality of the estimated space, we included only

voxels that were significantly predicted (p < 0.05, uncorrected)

by the categorymodel (see Experimental Procedures for details).

Because humans can perceive thousands of categories

of objects and actions, the true semantic space underlying

Figure 1. Schematic of the Experiment and Model

Subjects viewed 2 hr of natural movies while BOLD responses weremeasured using fMRI. Objects and actions in themovies were labeled using 1,364 terms from

the WordNet lexicon (Miller, 1995). The hierarchical ‘‘is a’’ relationships defined by WordNet were used to infer the presence of 341 higher-order categories,

providing a total of 1,705 distinct category labels. A regularized, linearized finite impulse response regression model was then estimated for each cortical voxel

recorded in each subject’s brain (Kay et al., 2008; Mitchell et al., 2008; Naselaris et al., 2009; Nishimoto et al., 2011). The resulting category model weights

describe how various object and action categories influence BOLD signals recorded in each voxel. Categories with positive weights tend to increase BOLD, while

those with negative weights tend to decrease BOLD. The response of a voxel to a particular scene is predicted as the sum of the weights for all categories in that

scene.
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category representation in the brain probably has many dimen-

sions. However, given the limitations of fMRI and a finite stimulus

set, we expect that we will only be able to recover the first few

dimensions of the semantic space for each individual brain and

fewer still dimensions that are shared across individuals. Thus,

of the 1,705 semantic PCs produced by PCA on the voxel

weights, only the first few will resemble the true underlying

semantic space, while the remainder will be determined mostly

by the statistics of the stimulus set and noise in the fMRI data.

To determine which PCs are significantly different from

chance, we compared the semantic PCs to the PCs of the cate-

gory stimulus matrix (see Experimental Procedures for details of

why the stimulus PCs are an appropriate null hypothesis). First,

we tested the significance of each subject’s own categorymodel

weight PCs. If there is a semantic space underlying category

representation in the subject’s brain, then we should find that

some of the subject’s model weight PCs explainmore of the vari-

ance in the subject’s category model weights than is explained

by the stimulus PCs. However, if there is no semantic space

underlying category representation in the subject’s brain, then

the stimulus PCs should explain the same amount of variance

in the category model weights as do the subject’s PCs. The

results of this analysis are shown in Figure 3. Six to eight PCs

from individual subjects explain significantly more variance in

category model weights than do the stimulus PCs (p < 0.001,

bootstrap test). These individual subject PCs explain a total of

30%–35% of the variance in category model weights. Thus,

our fMRI data are sufficient to recover semantic spaces for indi-

vidual subjects that consist of six to eight dimensions.

Second, we used the same procedure to test the significance

of group PCs constructed using data combined across subjects.

To avoid overfitting, we constructed a separate group semantic

space for each subject using combined data from the other four

subjects. If the subjects share a common semantic space, then

some of the group PCs should explain more of the variance in the

selected subject’s category model weights than do the stimulus

PCs. However, if the subjects do not share a common semantic

space, then the stimulus PCs should explain the same amount of

variance in the categorymodel weights as do the group PCs. The

results of this analysis are also shown in Figure 3. The first four

group PCs explain significantly more variance (p < 0.001, boot-

strap test) than do the stimulus PCs in four out of five subjects.

Figure 2. Category Selectivity for Two Individual Voxels

Each panel shows the predicted response of one voxel to each of the 1,705 categories, organized according to the graphical structure of WordNet. Links indicate

‘‘is a’’ relationships (e.g., an athlete is a person); some relationships used in the model are omitted for clarity. Eachmarker represents a single noun (circle) or verb

(square). Red markers indicate positive predicted responses and blue markers indicate negative predicted responses. The area of each marker indicates pre-

dicted response magnitude. The prediction accuracy of each voxel model, computed as the correlation coefficient (r) between predicted and actual responses, is

shown in the bottom right of each panel along with model significance (see Results for details).

(A) Category selectivity for one voxel located in the left hemisphere parahippocampal place area (PPA). The category model predicts that movies will evoke

positive responses when ‘‘structures,’’ ‘‘buildings,’’ ‘‘roads,’’ ‘‘containers,’’ ‘‘devices,’’ and ‘‘vehicles’’ are present. Thus, this voxel appears to be selective for

scenes that contain man-made objects and structures (Epstein and Kanwisher, 1998).

(B) Category selectivity for one voxel located in the right hemisphere precuneus (PrCu). The category model predicts that movies will evoke positive responses

from this voxel when ‘‘people,’’ ‘‘carnivores,’’ ‘‘communication verbs,’’ ‘‘rooms,’’ or ‘‘vehicles’’ are present and negative responses when movies contain

‘‘atmospheric phenomena,’’ ‘‘locations,’’ ‘‘buildings,’’ or ‘‘roads.’’ Thus, this voxel appears to be selective for scenes that contain people or animals interacting

socially (Iacoboni et al., 2004).
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a hypothesized dimension provides a good description of one

of the group PCs, then that dimension will explain a large fraction

of the variance in that PC. If a hypothesized dimension is

captured by the group semantic space but does not line up

exactly with one of the PCs, then that dimension will explain vari-

ance in multiple PCs.

The comparison between the group PCs and hypothesized

semantic dimensions is shown in Figure 6. The first PC is best ex-

plained by a dimension that contrasts mobile categories (people,

nonhuman animals, and vehicles) with nonmobile categories.

The first PC is also well explained by a dimension that is an

extension of a previously reported ‘‘animacy’’ continuum (Con-

nolly et al., 2012). Our animacy dimension assigns the highest

weight to people, decreasing weights to other mammals, birds,

reptiles, fish, and invertebrates, and zero weight to all nonanimal

categories. The second PC is best explained by a dimension that

contrasts categories associated with social interaction (people

and communication verbs) with all other categories. The third

PC is best explained by a dimension that contrasts categories

associated with civilization (people, man-made objects, and

vehicles) with categories associated with nature (nonhuman

animals). The fourth PC is best explained by a dimension that

contrasts biological categories (animals, plants, people, and

body parts) with nonbiological categories, as well as a similar

dimension that contrasts animal categories (including people)

with nonanimal categories. These results provide quantitative

interpretations for the group PCs and show that many hypothe-

sized semantic dimensions are captured by the group semantic

space.

The results shown in Figure 6 also suggest that some hypoth-

esized semantic dimensions are not captured by the group

semantic space. The contrast between place categories (build-

ings, roads, outdoor locations, and geological features) and

nonplace categories is not captured by any group PC. This is

surprising because the representation of place categories is

thought to be of primary importance to many brain areas,

including the PPA (Epstein and Kanwisher, 1998), retrosplenial

cortex (RSC; Aguirre et al., 1998), and temporo-occipital sulcus

(TOS; Nakamura et al., 2000; Hasson et al., 2004). Our results

may appear different from the results of earlier studies of place

representation because those earlier studies used static images

and not movies.

Another hypothesized semantic dimension that is not cap-

tured by our group semantic space is real-world object size

(Konkle and Oliva, 2012). The object size dimension assigns

a high weight to large objects (e.g., ‘‘boat’’), medium weight to

human-scale objects (e.g., ‘‘person’’), a small weight to small

Figure 5. Spatial Visualization of the Group Semantic Space

(A) All 1,705 categories, organized by their coefficients on the second and third

PCs. Links indicate ‘‘is a’’ relationships (e.g., an athlete is a person) from the

WordNet graph; some relationships used in the model have been omitted for

clarity. Eachmarker represents a single noun (circle) or verb (square). The color

of each marker is determined by an RGB colormap based on the category

coefficients in PCs 2–4 (see Figure 4B for details). The position of each marker

is also determined by the PC coefficients: position on the x axis is determined

by the coefficient on the second PC and position on the y axis is determined

by the coefficient on the third PC. This ensures that categories that are

represented similarly in the brain appear near each other. The area of each

marker indicates the magnitude of the PC coefficients for that category;

more important or strongly represented categories have larger coefficients.

The categories ‘‘man,’’ ‘‘talk,’’ ‘‘text,’’ ‘‘underwater,’’ and ‘‘car’’ have the largest

coefficients on these PCs.

(B) All 1,705 categories, organized by their coefficients on the second and

fourth PCs. Format is the same as (A). The large group of ‘‘animal’’ categories

has large PC coefficients and is mainly distinguished by the fourth PC. Human

categories appear to span a continuum. The category ‘‘person’’ is very close to

indoor categories such as ‘‘room’’ on the second and third PCs but different on

the fourth. The category ‘‘athlete’’ is close to vehicle categories on the second

and third PCs but is also close to ‘‘animal’’ on the fourth PC. These semanti-

cally related categories are represented similarly in the brain, supporting the

hypothesis of a smooth semantic space. However, these results also show

that some categories (e.g., ‘‘talk,’’ ‘‘man,’’ ‘‘text,’’ and ‘‘car’’) appear to bemore

important than others. Movie S1 shows this semantic space in 3D.
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a hypothesized dimension provides a good description of one

of the group PCs, then that dimension will explain a large fraction

of the variance in that PC. If a hypothesized dimension is

captured by the group semantic space but does not line up

exactly with one of the PCs, then that dimension will explain vari-

ance in multiple PCs.

The comparison between the group PCs and hypothesized

semantic dimensions is shown in Figure 6. The first PC is best ex-

plained by a dimension that contrasts mobile categories (people,

nonhuman animals, and vehicles) with nonmobile categories.

The first PC is also well explained by a dimension that is an

extension of a previously reported ‘‘animacy’’ continuum (Con-

nolly et al., 2012). Our animacy dimension assigns the highest

weight to people, decreasing weights to other mammals, birds,

reptiles, fish, and invertebrates, and zero weight to all nonanimal

categories. The second PC is best explained by a dimension that

contrasts categories associated with social interaction (people

and communication verbs) with all other categories. The third

PC is best explained by a dimension that contrasts categories

associated with civilization (people, man-made objects, and

vehicles) with categories associated with nature (nonhuman

animals). The fourth PC is best explained by a dimension that

contrasts biological categories (animals, plants, people, and

body parts) with nonbiological categories, as well as a similar

dimension that contrasts animal categories (including people)

with nonanimal categories. These results provide quantitative

interpretations for the group PCs and show that many hypothe-

sized semantic dimensions are captured by the group semantic

space.

The results shown in Figure 6 also suggest that some hypoth-

esized semantic dimensions are not captured by the group

semantic space. The contrast between place categories (build-

ings, roads, outdoor locations, and geological features) and

nonplace categories is not captured by any group PC. This is

surprising because the representation of place categories is

thought to be of primary importance to many brain areas,

including the PPA (Epstein and Kanwisher, 1998), retrosplenial

cortex (RSC; Aguirre et al., 1998), and temporo-occipital sulcus

(TOS; Nakamura et al., 2000; Hasson et al., 2004). Our results

may appear different from the results of earlier studies of place

representation because those earlier studies used static images

and not movies.

Another hypothesized semantic dimension that is not cap-

tured by our group semantic space is real-world object size

(Konkle and Oliva, 2012). The object size dimension assigns

a high weight to large objects (e.g., ‘‘boat’’), medium weight to

human-scale objects (e.g., ‘‘person’’), a small weight to small

Figure 5. Spatial Visualization of the Group Semantic Space

(A) All 1,705 categories, organized by their coefficients on the second and third

PCs. Links indicate ‘‘is a’’ relationships (e.g., an athlete is a person) from the

WordNet graph; some relationships used in the model have been omitted for

clarity. Eachmarker represents a single noun (circle) or verb (square). The color

of each marker is determined by an RGB colormap based on the category

coefficients in PCs 2–4 (see Figure 4B for details). The position of each marker

is also determined by the PC coefficients: position on the x axis is determined

by the coefficient on the second PC and position on the y axis is determined

by the coefficient on the third PC. This ensures that categories that are

represented similarly in the brain appear near each other. The area of each

marker indicates the magnitude of the PC coefficients for that category;

more important or strongly represented categories have larger coefficients.

The categories ‘‘man,’’ ‘‘talk,’’ ‘‘text,’’ ‘‘underwater,’’ and ‘‘car’’ have the largest

coefficients on these PCs.

(B) All 1,705 categories, organized by their coefficients on the second and

fourth PCs. Format is the same as (A). The large group of ‘‘animal’’ categories

has large PC coefficients and is mainly distinguished by the fourth PC. Human

categories appear to span a continuum. The category ‘‘person’’ is very close to

indoor categories such as ‘‘room’’ on the second and third PCs but different on

the fourth. The category ‘‘athlete’’ is close to vehicle categories on the second

and third PCs but is also close to ‘‘animal’’ on the fourth PC. These semanti-

cally related categories are represented similarly in the brain, supporting the

hypothesis of a smooth semantic space. However, these results also show

that some categories (e.g., ‘‘talk,’’ ‘‘man,’’ ‘‘text,’’ and ‘‘car’’) appear to bemore

important than others. Movie S1 shows this semantic space in 3D.
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To better understand the overall structure of the semantic

space, we created an analogous figure in which category posi-

tion is determined by the PCs instead of theWordNet graph. Fig-

ure 5 shows the location of all 1,705 categories in the space

formed by the second, third, and fourth group PCs (Movie S1

shows the categories in 3D). Here, categories that are repre-

sented similarly in the brain are plotted at nearby positions. Cate-

gories that appear near the origin have small PC coefficients and

thus are generally weakly represented or are represented simi-

larly across voxels (e.g., ‘‘laptop’’ and ‘‘clothing’’). In contrast,

categories that appear far from the origin have large PC coeffi-

cients and thus are represented strongly in some voxels and

weakly in others (e.g., ‘‘text,’’ ‘‘talk,’’ ‘‘man,’’ ‘‘car,’’ ‘‘animal,’’

and ‘‘underwater’’). These results support earlier findings that

categories such as faces (Avidan et al., 2005; Clark et al.,

1996; Halgren et al., 1999; Kanwisher et al., 1997; McCarthy

et al., 1997; Rajimehr et al., 2009; Tsao et al., 2008) and text (Co-

hen et al., 2000) are represented strongly and distinctly in the

human brain.

Interpretation of the Semantic Space

Earlier studies have suggested that animal categories (including

people) are represented distinctly from nonanimal categories

(Connolly et al., 2012; Downing et al., 2006; Kriegeskorte et al.,

2008; Naselaris et al., 2009). To determine whether hypothesized

semantic dimensions such as animal versus nonanimal are

captured by the group semantic space, we compared each of

the group semantic PCs to nine hypothesized semantic dimen-

sions. For each hypothesized dimension, we first assigned a

value to each of the 1,705 categories. For example, for the

dimension animal versus nonanimal, we assigned the value +1

to all animal categories and the value 0 to all nonanimal cate-

gories. Then we computed how much variance each hypothe-

sized dimension explained in each of the group PCs. If

Figure 4. Graphical Visualization of the Group Semantic Space

(A) Coefficients of all 1,705 categories in the first group PC, organized according to the graphical structure of WordNet. Links indicate ‘‘is a’’ relationships (e.g., an

athlete is a person); some relationships used in the model have been omitted for clarity. Each marker represents a single noun (circle) or verb (square). Red

markers indicate positive coefficients and blue indicates negative coefficients. The area of each marker indicates the magnitude of the coefficient. This PC

distinguishes between categories with high stimulus energy (e.g., moving objects like ‘‘person’’ and ‘‘vehicle’’) and those with low stimulus energy (e.g., stationary

objects like ‘‘sky’’ and ‘‘city’’).

(B) The three-dimensional RGB colormap used to visualize PCs 2–4. The category coefficient in the second PC determined the value of the red channel, the third

PC determined the green channel, and the fourth PC determined the blue channel. Under this scheme, categories that are represented similarly in the brain are

assigned similar colors. Categories with zero coefficients appear neutral gray.

(C) Coefficients of all 1,705 categories in group PCs 2–4, organized according to theWordNet graph. The color of eachmarker is determined by theRGBcolormap

in (B). Marker sizes reflect the magnitude of the three-dimensional coefficient vector for each category. This graph shows that categories thought to be

semantically related (e.g., ‘‘athletes’’ and ‘‘walking’’) are represented similarly in the brain.
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Another region of human action, athlete, and animal representa-

tion (red-yellow) is located at the posterior inferior frontal sulcus

(IFS) and contains the frontal operculum (FO). Both the FO and

FEF have been associated with visual attention (Büchel et al.,

1998), so we suspect that human action categories might be

correlated with salient visual movements that attract covert

visual attention in our subjects.

In inferior frontal cortex, a region of indoor structure (blue),

human (green), communication verb (also blue-green), and text

(cyan) representation runs along the IFS anterior to the FO.

This region coincides with the inferior frontal sulcus face patch

(Avidan et al., 2005; Tsao et al., 2008) and has also been impli-

cated in processing of visual speech (Calvert and Campbell,

2003) and text (Poldrack et al., 1999). Our results suggest that

visual speech, text, and faces are represented in a contiguous

region of cortex.

Smoothness of Cortical Semantic Maps

We have shown that the brain represents hundreds of categories

within a continuous four-dimensional semantic space that is

shared among different subjects. Furthermore, the results shown

in Figure 7 suggest that this space is mapped smoothly onto the

cortical sheet. However, the results presented thus far are not

sufficient to determine whether the apparent smoothness of

the cortical map reflects the specific properties of the group

semantic space, or rather whether a smooth map might result

from any arbitrary four-dimensional projection of our voxel

weights onto the cortical sheet. To address this issue, we tested

Figure 7. Semantic Space Represented across the Cortical Surface

(A) The category model weights for each cortical voxel in subject A.V. are projected onto PCs 2–4 of the group semantic space and then assigned a color ac-

cording to the scheme described in Figure 4B. These colors are projected onto a cortical flatmap constructed for subject A.V. Each location on the flatmap shown

here represents a single voxel in the brain of subject A.V. Locations with similar colors have similar semantic selectivity. This map reveals that the semantic space

is represented in broad gradients distributed across much of anterior visual cortex. Semantic selectivity is also apparent in medial and lateral parietal cortex,

auditory cortex, and lateral prefrontal cortex. Brain areas identified using conventional functional localizers are outlined in white and labeled (see Table S1 for

abbreviations). Boundaries that have been inferred from anatomy or that are otherwise uncertain are denoted by dashed white lines. Major sulci are denoted by

dark blue lines and labeled (see Table S2 for abbreviations). Some anatomical regions are labeled in light blue (abbreviations: PrCu, precuneus; TPJ, tempor-

oparietal junction). Cuts made to the cortical surface during the flattening procedure are indicated by dashed red lines and a red border. The apex of each cut is

indicated by a star. Blue borders show the edge of the corpus callosum and subcortical structures. Regions of fMRI signal dropout due to field inhomogeneity are

shaded with black hatched lines.

(B) Projection of voxel model weights onto the first PC for subject A.V. Voxels with positive projections on the first PC appear red, while those with negative

projections appear blue and those orthogonal to the first PC appear gray.

(C) Projection of voxel weights onto PCs 2–4 of the group semantic space for subject T.C.

(D) Projection of voxel model weights onto the first PC for subject T.C. See Figure S5 for maps of semantic representation in other subjects.

Note: explore these data sets yourself at http://gallantlab.org/semanticmovies.
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A Continuous Semantic Space Describes the Representation of Thousands of 
Object and Action Categories across the Human Brain (A. G. Huth et al.) 

v Projection of the recovered semantic space onto cortical flat maps shows that semantic selectivity is 
organized into smooth gradients that cover much of visual and nonvisual cortex

v Both the recovered semantic space and the cortical organization of the space are shared across different 
individuals



Natural speech reveals the semantic maps that tile human 
cerebral cortex (A. G. Huth et al.)

v The semantic system is organized into intricate patterns that seem to be consistent 
across individuals. 

v Generative model to create a detailed semantic atlas. 
v Most areas within the semantic system represent information about specific semantic 

domains, or groups of related concepts, and their atlas shows which domains are 
represented in each area.
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of variance (P <  0.001, Bonferroni-corrected bootstrap test) in all but 
one subject; in the last subject only three dimensions were significant 
(Extended Data Fig. 2). This suggests that our fMRI data contain about 
four statistically significant semantic dimensions that are shared across  
subjects.

The four shared semantic dimensions provide a way to summarize 
succinctly the semantic selectivity of a voxel. However, to interpret 
projections of the models onto these dimensions we need to under-
stand how semantic information is encoded in this four-dimensional 
space. To visualize the semantic space, we projected the 10,470 words 
in the stories from the word embedding space onto each dimension. 
We then used k-means clustering to identify 12 distinct categories (see 
Supplementary Methods for details). Each category was inspected and 
labelled by hand. The labels assigned to the 12 categories were ‘tactile’ 
(a cluster containing words such as ‘fingers’), ‘visual’ (words such as 
‘yellow’), ‘numeric’ (‘four’), ‘locational’ (‘stadium’), ‘abstract’ (‘natural’),  
‘temporal’ (‘minute’), ‘professional’ (‘meetings’), ‘violent’ (‘lethal’),  
‘communal’ (‘schools’), ‘mental’ (‘asleep’), ‘emotional’ (‘despised’) and 
‘social’ (‘child’). (See Supplementary Table 2 and Supplementary Data 
5 for more detailed evaluations of each category.)

Next, we visualized where each of the 12 categories appeared in the 
shared semantic space (Fig. 2a). Each category label was also assigned 
an RGB colour, where the red channel was determined by the first 
dimension, the green channel by the second, and the blue channel by 
the third. The first dimension is that which captured the most seman-
tic variance across the voxel-wise models of all seven subjects. One 
end of this dimension favours categories related to humans and social 
interaction, including ‘social’, ‘emotional’, ‘violent’ and ‘communal’. The 
other end favours categories related to perceptual descriptions, quanti-
tative descriptions and setting, including ‘tactile’, ‘locational’, ‘numeric’ 
and ‘visual’. This is consistent with previous suggestions that humans 
comprise a particularly salient and strongly represented semantic 
domain16,21. Subsequent dimensions of the semantic space captured 
less variance than the first and were also more difficult to interpret. The 
second dimension seems to distinguish between perceptual categories, 
including ‘visual’ and ‘tactile’, and non-perceptual categories, including 
‘mental’, ‘professional’ and ‘temporal’. The third and fourth dimensions 
are less clear.

Earlier studies identified the cortical regions comprising the seman-
tic system1,2, but could not comprehensively characterize their semantic 
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Figure 1 | Voxel-wise modelling. a, Seven subjects listened to over 2 h of 
naturally spoken narrative stories while BOLD responses were measured 
using fMRI. Each word in the stories was projected into a 985-dimensional 
word embedding space constructed using word co-occurrence statistics 
from a large corpus of text. A finite impulse response (FIR) regression 
model was estimated individually for every voxel. The voxel-wise model 
weights describe how words appearing in the stories influence BOLD 
signals. b, Models were tested using one 10-min story that was not 

included during model estimation. Model prediction performance was 
computed as the correlation between predicted responses to this story and 
actual BOLD responses. c, Prediction performance of voxel-wise models 
for one subject. Semantic models accurately predict BOLD responses in 
many brain areas, including the LTC, VTC, LPC, MPC, SPFC and IPFC. 
These regions have previously been identified as the semantic system in 
the human brain. LH, left hemisphere; RH, right hemisphere.
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Natural speech reveals the semantic maps that tile human 
cerebral cortex (A. G. Huth et al.)



Natural speech reveals the semantic maps that tile human 
cerebral cortex (A. G. Huth et al.)

v The embedding space:

v Normalized co-occurrence between each word and a set of 985 common English 
words across a large corpus of English text.

v such as ‘above’, ‘worry’ and ‘mother’ 

v Words related to the same semantic domain tend to occur in similar contexts, and 
so have similar co-occurrence values.

v For example, the words ‘month’ and ‘week’ are very similar (the correlation between 
the two is 0.74), while the words ‘month’ and ‘tall’ are not (correlation −0.22). 









Natural speech reveals the semantic maps that tile human 
cerebral cortex (A. G. Huth et al.)
● The distribution of semantically selective areas is relatively symmetrical across the two cerebral 

hemispheres. 
● Organization of semantically selective brain areas seems to be highly consistent across 

individuals. 
● Demonstrates the power and efficiency of data-driven approaches for functional mapping of the 

human brain. 
○ Although the experiment used a simple design in which subjects only listened to stories, the data 

were rich enough to produce a comprehensive atlas of semantically selective areas. 
● General data-driven framework:

○ Other properties of language can be mapped (even in this same data set) by using feature spaces 
that reflect phonemes, syntax and so on. 






