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Variational auto-encoder

Generative model with NN likelihood

z

x θ

N

λ
complex (non-linear) observation model
pθ(x |z)

complex (non-linear) mapping from data
to latent variables qλ(z |x)

Jointly optimise generative model pθ(x |z) and inference model
qλ(z |x) under the same objective (ELBO)

Kingma and Welling (2013)
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Objective

log pθ(x) ≥
ELBO︷ ︸︸ ︷

Eqλ(z|x) [log pθ(x |Z )]− KL (qλ(z |x) || p(z))

Parameter estimation

arg max
θ,λ

Eq(ε)

log pθ(x | h−1(ε, λ)︸ ︷︷ ︸
=z

)

− KL (qλ(z |x) || p(z))

assume KL (qλ(z |x) || p(z)) analytical
true for exponential families

approximate Eq(ε)

[
log pθ(x |h−1(ε, λ))

]
by sampling

requires a reparameterisation
h−1(ε, λ) ∼ qλ(z |x)⇔ h(z , λ) ∼ q(ε)
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Discrete variables

Suppose z is a d-dimensional binary vector
i.e. zi ∈ {0, 1}

Then let’s define an inference model

qλ(z |x) =
d∏

i=1

qλ(zi |x)︸ ︷︷ ︸
mean field

=
d∏

i=1

Bern(zi | sigmoid(fλ(x))︸ ︷︷ ︸
NN

) (1)

Can we reparameterise qλ(zi |x)?

Wilker Aziz DGMs in NLP 5
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Bernoulli pmf

Bern(zi |bi ) = bzii (1− bi )
1−zi

=

{
bi if zi = 1

1− bi if zi = 0

(2)

Can we reparameterise a Bernoulli variable?

Wilker Aziz DGMs in NLP 6
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Reparameterisation requires a Jacobian matrix

Not really :(

q(z ;λ) = φ(ε = h(z , λ))
∣∣det Jh(z,λ)

∣∣︸ ︷︷ ︸
change of density

(3)

Elements in the Jacobian matrix

Jh(z,λ)[i , j ] =
∂hi (z , λ)

∂zj

are not defined for non-differentiable functions

Wilker Aziz DGMs in NLP 7
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Relaxation

Let’s redefine zi to live in the interval (0, 1)

and find an alternative reparameterisable density

Examples

Z ∼ LN (u, s2)
z = sigmoid(u + sε) with ε ∼ N (0, 1)

Z ∼ Kuma(a, b)

z =
(

1− (1− ε)
1
b

) 1
a

with ε ∼ U(0, 1)

Z ∼ Concrete(u, τ)
z = sigmoid(u+ε

τ ) with ε ∼ Gumbel(0, 1)

But note that we no longer have a discrete variable

Kumaraswamy Gumbel

Wilker Aziz DGMs in NLP 9
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Straight-through estimator

Let σ : (0, 1)→ {0, 1} map from a continuous relaxation z to a
discrete sample, e.g.

σ(z) =

{
1 if z > 0.5

0 otherwise
(4)

Then we compute a forward pass with the discrete variable

Eq(ε)

log pθ(x |σ(h−1(ε, λ)︸ ︷︷ ︸
=z

))

 (5)

but back-propagate through the continuous relaxation

∂σ(h−1(ε, λ))

∂λ

def
=
∂h−1(ε, λ)

∂λ
(6)

Bengio et al. (2013)
Wilker Aziz DGMs in NLP 10
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Stochastic optimisation with ST estimator

The straight-through estimator is biased

and it’s bias cannot be quantified analytically

Stochastic optimisation with biased gradients is a heuristic

its success will vary from case to case and there are no general
lessons

it has been shown to work for

simple discrete (binary or 1-of-K) variables (Jang et al., 2016)
for sequences (Havrylov and Titov, 2017)

but for trees the story is not as clear (Choi et al., 2017)

Wilker Aziz DGMs in NLP 11
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Concrete or Gumbel-Softmax

An alternative parameterisation of a Categorical variable

A ∼ Cat(softmax(φ))

A = arg max
i

[φi + εi ]
K
i=1 where ε ∼ Gumbel(0, I )

(7)

We can sample a one-hot encoding of the categorical variable

B = onehot

(
arg max

i
[φi + εi ]

K
i=1

)
(8)

And we get a continuous relaxation with softmax

B = softmax(φ+ ε) (9)

Finally, with a temperature τ we can approach a one-hot encoding
of the most likely category as τ → 0

B = softmax

(
φ+ ε

τ

)
(10)

Wilker Aziz DGMs in NLP 12
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Simplex

The tips of the simplex represent a one-hot encoding of a 3-way
Categorical variable

the softmax relaxes the variable to take on values in the
interior of the simplex

as we cool down the system we push most of the mass
towards the tips

Illustrations from (Maddison et al., 2016).
Wilker Aziz DGMs in NLP 13
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Concrete samples

Illustrations from (Jang et al., 2016).
Wilker Aziz DGMs in NLP 14
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