e
Unsupervised Language Learning: Representation Learning for NLP

Unsupervised Language Learning:
Representation Learning for NLP

Katia Shutova

ILLC
University of Amsterdam

4 April 2018



Unsupervised Language Learning: Representation Learning for NLP

Lecture 2: Semantics with dense vectors &
compositional semantics

Word clustering (finishing off)
Semantics with dense vectors
Compositional semantics
Compositional distributional semantics

Semantic composition in recurrent neural networks



Unsupervised Language Learning: Representation Learning for NLP
I—Word clustering (finishing off)

Outline.

Word clustering (finishing off)



Unsupervised Language Learning: Representation Learning for NLP
I—Word clustering (finishing off)

Clustering nouns

truck lor
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bicycle street
driver road avenue
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mechanic lab building
engineer o shack
scientist )
plumber office flat
writer dwelling
journalist proceedings
book
journal
newspaper

magazine



Unsupervised Language Learning: Representation Learning for NLP
I—Word clustering (finishing off)

Clustering nouns

truck lorry
bike path
highway way
. taxi
bicycle
road avenue
mechanic building
engineer shack
scientist )
plumber office flat
dwelling
journalist proceedings
journal
newspaper

magazine




Unsupervised Language Learning: Representation Learning for NLP
I—Semantics with dense vectors

Outline.

Semantics with dense vectors



Unsupervised Language Learning: Representation Learning for NLP

LSemantic:; with dense vectors

Distributional semantic models

1. Count-based models:

» Explicit vectors: dimensions are elements in the context
» long sparse vectors with interpretable dimensions

2. Prediction-based models:
» Train a model to predict plausible contexts for a word
» learn word representations in the process
» short dense vectors with latent dimensions
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LSemamtics with dense vectors

Sparse vs. dense vectors

Why dense vectors?

» easier to use as features in machine learning
(less weights to tune)

» may generalize better than storing explicit counts

» may do better at capturing synonymy:

» e.g. car and automobile are distinct dimensions in
count-based models

» will not capture similarity between a word with car as a
neighbour and a word with automobile as a neighbour
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LSemantics with dense vectors

Prediction-based models

Mikolov et. al. 2013. Efficient Estimation of Word Representations in
Vector Space.

word2vec: SKip-gram and CBOW (continuous bag of words)

» inspired by work on neural language models
» train a neural network to predict neighboring words

» learn dense embeddings for the words in the training corpus in
the process
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|
Skip-gram vs. CBOW
INPUT ~ PROJECTION ~ OUTPUT INPUT ~ PROJECTION ~ OUTPUT
w(t-2) w(t-2)
wit-1) w(t-1)
SUM
w(t) w(z)D—»
w(t+1) w(t+1)
w(t+2)
cBOw

Slide credit: Tomas Mikolov
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LSemantics with dense vectors
Skip-gram

Intuition: words with similar meanings often occur near each
other in texts
Given a word w;:

» Predict each neighbouring word

» in a context window of 2L words
» from the current word.

» For L = 2, we predict its 4 neighbouring words:

(Wi_o, Wi—1, Wii1, Weyo]
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Skip-gram: Parameter matrices

Learn 2 embeddings for each word w; € V,,:

» word embedding v, in word matrix W
» context embedding c, in context matrix C

w C

target embeddings context embeddings

1... ... d

n
<
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LSemamtics with dense vectors

Skip-gram: Setup

» Walk through the corpus pointing at word w(t), whose
index in the vocabulary is j — we will call it w;

» our goal is to predict w(t + 1), whose index in the
vocabulary is k — we will call it wy

» to do this, we need to compute
p(wi|w;)

» Intuition behind skip-gram: to compute this probability we
need to compute similarity between w; and wj
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Skip-gram: Computing similarity

Similarity as dot-product between the target vector and context vector

W C

target embeddings context embeddings
target embedding _.---"7" ; d
. I 'Y .

forword 4.2 eV 1
1 o}
s/ O

Similarity(j , k) . ° Tk [Ee=e9)
R ‘a
\\\\ L IVyy

context embedding
for word k

Slide credit: Dan Jurafsky
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LSemantics with dense vectors

Skip-gram: Similarity as dot product

» Remember cosine similarity?

doviox v2 vl-v2

cos(v1,v2) =

\/Z V12 \/Z va? —ivaliival]
It's just @ normalised dot product.

» Skip-gram: Similar vectors have a high dot product

Similarity(ck, vj) o« Cx - v
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LSemantics with dense vectors

Skip-gram: Compute probabilities

» Compute similarity as a dot product
Similarity (c, vj) o< Cx - v

» Normalise to turn this into a probability
» by passing through a softmax function:

ek Vi

P(WkW) = =5
P ey e
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LSemantics with dense vectors

Skip-gram: Learning

» Start with some initial embeddings (usually random)
» At training time, walk through the corpus

» iteratively make the embeddings for each word

» more like the embeddings of its neighbors
» less like the embeddings of other words.



Unsupervised Language Learning: Representation Learning for NLP

LSemantics with dense vectors

Skip-gram: Objective

Learn parameters C and W that maximize the overall corpus
probability:
argmax  [[  p(wk|w)
(w;,wy)eD
eckYj

icy €7

argmax Y logp(wxlw;) = Y (loge®i—log > %)

(w;,wk)eD (w;,wx)eD ceV
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LSemantics with dense vectors

Skip-gram with negative sampling

Problem with softmax: expensive to compute the denominator for the

whole vocabulary
eckYi

p(wi|w)) = S e
e

Approximate the denominator: negative sampling
» At training time, walk through the corpus
» for each target word and positive context

» sample k noise samples or negative samples, i.e. other words
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Skip-gram with negative sampling

» Objective in training:

» Make the word like the context words

lemon, a [tablespoon of apricot preserves or] jam.

Cq Co w C3 Cy

» And not like the k negative examples

[cement idle dear coaxial apricot attendant whence forever puddle]
n no N3 Ny w Ns Ng

ny ng
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Visualising skip-gram as a network

Input layer Projection layer Output layer
. probabilities of
1-hot input vector embedding for w; context words
Xl : : v
X, @ o y ;
w. ) el :
t X ? oy, Wil
Ll |
® o :
*vi@ : ; v
1% |V| Ixd 1x |V|

Slide credit: Dan Jurafsky
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LSemantics with dense vectors

One hot vectors

v

A vector of length |V|

1 for the target word and 0 for other words

So if “bear” is vocabulary word 5

The one-hot vector is [0,0,0,0,1,0,0,0,0......... 0]

v

v

v

Wo Wy Wi Wivi

0000O0..0000100O0OO0OO0O..00O00O0
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Visualising skip-gram as a network

Input layer Projection layer Output layer
. probabilities of
1-hot input vector embedding for w; context words
Xl : : v
X, @ o y ;
w. ) el :
t X ? oy, Wil
Ll |
® o :
*vi@ : ; v
1% |V| Ixd 1x |V|

Slide credit: Dan Jurafsky
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Properties of embeddings

They capture similarity

FRANCE JESUS XBOX REDDISH SCRATCHED MEGABITS
454 1973 6909 11724 29869 87025
AUSTRIA GOD AMIGA GREENISH NAILED OCTETS
BELGIUM SATI PLAYSTATION BLUISH SMASHED MB/S
GERMANY CHRIST MSX PINKISH PUNCHED BIT/S
ITALY SATAN IPOD PURPLISH POPPED BAUD
GREECE KALI SEGA BROWNISH CRIMPED CARATS
SWEDEN INDRA PSNUMBER GREYISH SCRAPED KBIT/S
NORWAY VISHNU HD GRAYISH SCREWED MEGAHERTZ
EUROPE ANANDA  DREAMCAST WHITISH SECTIONED  MEGAPIXELS
HUNGARY PARVATI GEFORCE SILVERY SLASHED GBIT/S
SWITZERLAND GRACE CAPCOM YELLOWISH RIPPED AMPERES

Slide credit: Ronan Collobert
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Properties of embeddings
They capture analogy

Analogy task: aisfobascistod

The system is given words a, b, ¢, and it needs to find d.
“apple” is to “apples” as “car™ is to ?
“man” is to “woman” as “king” is to ?

996
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LSemantics with dense vectors

Properties of embeddings
They capture analogy

Analogy task: aisfobascistod

The system is given words a, b, ¢, and it needs to find d.
“apple” is to “apples” as “car™ is to ?
“man” is to “woman” as “king” is to ?

996

Solution: capture analogy via vector offsets
a-b~c-d

man — woman = King — queen

dw = argmax cos(a— b,c — d')
dyeVv
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LSemantics with dense vectors

Properties of embeddings
Capture analogy via vector offsets

man — woman = King — queen

WOMAN UEENS
A AUNT a
MAN KINGS
UNCLE
QUEEN QUEEN
KING KING

Mikolov et al. 2013. Linguistic Regularities in Continuous Space

Word Representations
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LSemantics with dense vectors

Properties of embeddings

They capture a range of semantic relations

Miami - Florida
Einstein - scientist
Sarkozy - France
copper - Cu
Berlusconi - Silvio
Microsoft - Windows
Microsoft - Ballmer
Japan - sushi

Baltimore: Maryland
Messi: midfielder
Berlusconi: Italy

zinc: Zn
Sarkozy: Nicolas
Google: Android
Google: Yahoo
Germany: bratwurst

Dallas: Texas
Mozart: violinist
Merkel: Germany

gold: Au
Putin: Medvedev
IBM: Linux
IBM: McNealy
France: tapas

Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker

Kona: Hawaii
Picasso: painter
Koizumi: Japan

uranium: plutonium

Obama: Barack

Apple: iPhone

Apple: Jobs
USA: pizza

Mikolov et al. 2013.

Vector Space

Efficient Estimation of Word Representations in
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LSemamtics with dense vectors

Word embeddings in practice

Word2vec is often used for pretraining in other tasks.
» It will help your models start from an informed position
» Requires only plain text - which we have a lot of
» |Is very fast and easy to use
» Already pretrained vectors also available (trained on 100B
words)

However, for best performance it is important to continue
training, fine-tuning the embeddings for a specific task.
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LSemantic:; with dense vectors

Count-based models vs. skip-gram word embeddings

Baroni et. al. 2014. Don’t count, predict! A systematic comparison of
context-counting vs. context-predicting semantic vectors.

» Comparison of count-based and neural word vectors on 5 types
of tasks and 14 different datasets:

Semantic relatedness
Synonym detection
Concept categorization
Selectional preferences
Analogy recovery

S
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LSemantics with dense vectors

Count-based models vs. skip-gram word embeddings

I Count-best-overall

M Count-individual
s B Predict-best-overall
M Predict-individual

relatedness
H
@

up

sel-pref categorizat. syn

mcrae

an

ansyn

analogy

ansem

20 40 60 80 100

Some of these findings were later disputed by Levy et. al. 2015. Improving
Distributional Similarity with Lessons Learned from Word Embeddings
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Compositional semantics
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LCompositional semantics

Compositional semantics

» Principle of Compositionality: meaning of each whole
phrase derivable from meaning of its parts.

» Sentence structure conveys some meaning

» Deep grammars: model semantics alongside syntax, one
semantic composition rule per syntax rule
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Compositional semantics alongside syntax

S

A

Ad/\ /\

i

|

carnivorous plants 'V slowly
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LCompositional semantics

Semantic composition is non-trivial

» Similar syntactic structures may have different meanings:

it barks
it rains; it snows — pleonastic pronouns

» Different syntactic structures may have the same meaning:

Kim seems to sleep.
It seems that Kim sleeps.

» Not all phrases are interpreted compositionally, e.g. idioms:
red tape
kick the bucket

but they can be interpreted compositionally too, so we can
not simply block them.
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LCompositional semantics

Semantic composition is non-trivial

» Elliptical constructions where additional meaning arises
through composition, e.g. logical metonymy:

fast programmer
fast plane

» Meaning transfer and additional connotations that arise
through composition, e.g. metaphor

I cant buy this story.
This sum will buy you a ride on the train.

» Recursion
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LCompositional semantics

Recursion

Bl

‘you perceived I wanted you fo feel.”

“Of course I care about how you imagined I thought
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Compositional distributional semantics



Unsupervised Language Learning: Representation Learning for NLP

LCompositional distributional semantics

Compositional distributional semantics

Can distributional semantics be extended to account for the
meaning of phrases and sentences?

» Language can have an infinite number of sentences, given
a limited vocabulary

» So we can not learn vectors for all phrases and sentences

» and need to do composition in a distributional space
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LCompositional distributional semantics

1. Vector mixture models

o old + dog

Mitchell and Lapata, 2010.
Composition in

Distributional Models of o
Semantics

barks
&
!

dog
Models:

» Additive

» Multiplicative

oo 05 10 15
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LCompositional distributional semantics

Additive and multiplicative models

additive multiplicative
dog cat old | old +dog old 4+ cat | 0ld ® dog old © cat
runs 1 4 0 1 4 0 0
barks | 5 0 7 ‘ 12 7 | 35 0

» correlate with human similarity judgments about
adjective-noun, noun-noun, verb-noun and noun-verb pairs

» but... commutative, hence do not account for word order
John hit the ball = The ball hit John!

» more suitable for modelling content words, would not port
well to function words:
e.g. some dogs; lice and dogs; lice on dogs
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LCompositional distributional semantics

2. Lexical function models

Distinguish between: o

» words whose meaning is
directly determined by their
distributional behaviour, e.g.
nouns

barks

» words that act as functions -
transforming the distributional
profile of other words, e.g., -
verbs, adjectives and
prepositions i




Unsupervised Language Learning: Representation Learning for NLP

LCompositional distributional semantics

Lexical function models

Baroni and Zamparelli, 2010. Nouns are vectors, adjectives are matrices:
Representing adjective-noun constructions in semantic space

Adjectives as lexical functions

old dog = old(dog)

> Adjectives are parameter matrices (Aoig , Asurry, €1C.).
» Nouns are vectors (house, dog, etc.).

» Composition is simply old dog = A,y x dog.

OLD \ runs  barks | dog I \ OLD(dog)

runs 0.5 0 runs 1 runs (0.5 x 1)+ (0 x 5)
x = =05

barks | 0.3 1 barks | 5 barks | (0.3 x1)+(5x1)

=5.3
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Learning adjective matrices

1. Obtain a distributional vector n; for each noun n; in the lexicon.
2. Collect adjective noun pairs (a;, n;) from the corpus.

3. Obtain a distributional vector p; of each pair (a;, ;) from the
same corpus using a conventional DSM.

4. The set of tuples {(n;, pj;)}, represents a dataset D(a;) for the
adjective a;.

5. Learn matrix A; from D(a;) using linear regression.

Minimize the squared error loss:

LAY = > llpj — Amj|?

j€D(a)
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Polysemy in lexical function models

Generally:
» use single representation for all senses

» assume that ambiguity can be handled as long as contextual
information is available

Exceptions:

» Kartsaklis and Sadrzadeh (2013): homonymy poses problems
and is better handled with prior disambiguation

» Gutierrez et al (2016): literal and metaphorical senses better
handled by separate models

» However, this is still an open research question.
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Semantic composition in recurrent neural networks
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Semantic composition in recurrent neural networks

An alternative is to perform semantic composition in recurrent
neural networks (RNNs)
» Take word vectors as input

» Train phrase representations in a supervised setting, i.e. in
a particular task

» Possible tasks: sentiment analysis; natural language
inference; paraphrasing; machine translation etc.

» But any sequence labelling task would produce
compositional representations when using RNNs.
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Recurrent Neural Networks

®
A =
®

@—>—@

Slide credit: Ann Copestake
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Compositional representations in RNNs

» widely used in NLP today

» task-specific representations, i.e. not general purpose (as
the ones learnt in an unsupervised way)

» oblivious of syntax
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