
Unsupervised Language Learning: Representation Learning for NLP

Unsupervised Language Learning:
Representation Learning for NLP

Katia Shutova

ILLC
University of Amsterdam

4 April 2018

Unsupervised Language Learning: Representation Learning for NLP

Lecture 2: Semantics with dense vectors &
compositional semantics

Word clustering (finishing off)

Semantics with dense vectors

Compositional semantics

Compositional distributional semantics

Semantic composition in recurrent neural networks

Unsupervised Language Learning: Representation Learning for NLP

Word clustering (finishing off)

Outline.

Word clustering (finishing off)

Semantics with dense vectors

Compositional semantics

Compositional distributional semantics

Semantic composition in recurrent neural networks

Unsupervised Language Learning: Representation Learning for NLP

Word clustering (finishing off)

Clustering nouns

car

bicycle

bike

taxi

lorry

driver

mechanic

plumber

engineer

writer

scientist

journalist

truck

proceedings

journal

book

newspaper

magazine

lab

office

building
shack

house

flat

dwelling

highway

road avenue
street

way
path

Unsupervised Language Learning: Representation Learning for NLP

Word clustering (finishing off)

Clustering nouns

car

bicycle

bike

taxi

lorry

driver

mechanic

plumber

engineer

writer

scientist

journalist

truck

proceedings

journal

book

newspaper

magazine

lab

office

building
shack

house

flat

dwelling

highway

road avenue
street

way
path

Unsupervised Language Learning: Representation Learning for NLP

Semantics with dense vectors

Outline.

Word clustering (finishing off)

Semantics with dense vectors

Compositional semantics

Compositional distributional semantics

Semantic composition in recurrent neural networks

Unsupervised Language Learning: Representation Learning for NLP

Semantics with dense vectors

Distributional semantic models

1. Count-based models:
I Explicit vectors: dimensions are elements in the context
I long sparse vectors with interpretable dimensions

2. Prediction-based models:
I Train a model to predict plausible contexts for a word
I learn word representations in the process
I short dense vectors with latent dimensions

Unsupervised Language Learning: Representation Learning for NLP

Semantics with dense vectors

Sparse vs. dense vectors

Why dense vectors?

I easier to use as features in machine learning
(less weights to tune)

I may generalize better than storing explicit counts
I may do better at capturing synonymy:

I e.g. car and automobile are distinct dimensions in
count-based models

I will not capture similarity between a word with car as a
neighbour and a word with automobile as a neighbour

Unsupervised Language Learning: Representation Learning for NLP

Semantics with dense vectors

Prediction-based models

Mikolov et. al. 2013. Efficient Estimation of Word Representations in
Vector Space.

word2vec: Skip-gram and CBOW (continuous bag of words)

I inspired by work on neural language models

I train a neural network to predict neighboring words

I learn dense embeddings for the words in the training corpus in
the process

Unsupervised Language Learning: Representation Learning for NLP

Semantics with dense vectors

Skip-gram vs. CBOW

w(t-2)

w(t+1)

w(t-1)

w(t+2)

w(t)

SUM

 INPUT PROJECTION OUTPUT

w(t)

 INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

 CBOW Skip-gram

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

R words from the future of the current word as correct labels. This will require us to do R ⇥ 2
word classifications, with the current word as input, and each of the R + R words as output. In the
following experiments, we use C = 10.

4 Results

To compare the quality of different versions of word vectors, previous papers typically use a table
showing example words and their most similar words, and understand them intuitively. Although
it is easy to show that word France is similar to Italy and perhaps some other countries, it is much
more challenging when subjecting those vectors in a more complex similarity task, as follows. We
follow previous observation that there can be many different types of similarities between words, for
example, word big is similar to bigger in the same sense that small is similar to smaller. Example
of another type of relationship can be word pairs big - biggest and small - smallest [20]. We further
denote two pairs of words with the same relationship as a question, as we can ask: ”What is the
word that is similar to small in the same sense as biggest is similar to big?”

Somewhat surprisingly, these questions can be answered by performing simple algebraic operations
with the vector representation of words. To find a word that is similar to small in the same sense as
biggest is similar to big, we can simply compute vector X = vector(”biggest”)�vector(”big”)+
vector(”small”). Then, we search in the vector space for the word closest to X measured by cosine
distance, and use it as the answer to the question (we discard the input question words during this
search). When the word vectors are well trained, it is possible to find the correct answer (word
smallest) using this method.

Finally, we found that when we train high dimensional word vectors on a large amount of data, the
resulting vectors can be used to answer very subtle semantic relationships between words, such as
a city and the country it belongs to, e.g. France is to Paris as Germany is to Berlin. Word vectors
with such semantic relationships could be used to improve many existing NLP applications, such
as machine translation, information retrieval and question answering systems, and may enable other
future applications yet to be invented.

5

Slide credit: Tomas Mikolov

Unsupervised Language Learning: Representation Learning for NLP

Semantics with dense vectors

Skip-gram

Intuition: words with similar meanings often occur near each
other in texts

Given a word wt :
I Predict each neighbouring word

I in a context window of 2L words
I from the current word.

I For L = 2, we predict its 4 neighbouring words:

[wt−2,wt−1,wt+1,wt+2]

Unsupervised Language Learning: Representation Learning for NLP

Semantics with dense vectors

Skip-gram: Parameter matrices
Learn 2 embeddings for each word wj ∈ Vw :

I word embedding v , in word matrix W
I context embedding c, in context matrix C

Dan%Jurafsky

Intuition:'similarity'as'dot<product
between'a'target'vector'and'context'vector

1
.
.
k
.
.

|Vw|

1.2…….j………|Vw|

1
.
.
.
d

W

context embedding
for word k

C
1. .. … d

target embeddings context embeddings

Similarity(j , k)

target embedding
for word j

22

j

Unsupervised Language Learning: Representation Learning for NLP

Semantics with dense vectors

Skip-gram: Setup

I Walk through the corpus pointing at word w(t), whose
index in the vocabulary is j — we will call it wj

I our goal is to predict w(t + 1), whose index in the
vocabulary is k — we will call it wk

I to do this, we need to compute

p(wk |wj)

I Intuition behind skip-gram: to compute this probability we
need to compute similarity between wj and wk

Unsupervised Language Learning: Representation Learning for NLP

Semantics with dense vectors

Skip-gram: Computing similarity
Similarity as dot-product between the target vector and context vector

Dan%Jurafsky

Intuition:'similarity'as'dot<product
between'a'target'vector'and'context'vector

1
.
.
k
.
.

|Vw|

1.2…….j………|Vw|

1
.
.
.
d

W

context embedding
for word k

C
1. .. … d

target embeddings context embeddings

Similarity(j , k)

target embedding
for word j

22

Slide credit: Dan Jurafsky

Unsupervised Language Learning: Representation Learning for NLP

Semantics with dense vectors

Skip-gram: Similarity as dot product

I Remember cosine similarity?

cos(v1, v2) =
∑

v1k ∗ v2k√∑
v12

k ∗
√∑

v22
k

=
v1 · v2
||v1||||v2||

It’s just a normalised dot product.

I Skip-gram: Similar vectors have a high dot product

Similarity(ck , vj) ∝ ck · vj

Unsupervised Language Learning: Representation Learning for NLP

Semantics with dense vectors

Skip-gram: Compute probabilities

I Compute similarity as a dot product

Similarity(ck , vj) ∝ ck · vj

I Normalise to turn this into a probability
I by passing through a softmax function:

p(wk |wj) =
eck ·vj∑
i∈V eci ·vj

Unsupervised Language Learning: Representation Learning for NLP

Semantics with dense vectors

Skip-gram: Learning

I Start with some initial embeddings (usually random)
I At training time, walk through the corpus
I iteratively make the embeddings for each word

I more like the embeddings of its neighbors
I less like the embeddings of other words.

Unsupervised Language Learning: Representation Learning for NLP

Semantics with dense vectors

Skip-gram: Objective

Learn parameters C and W that maximize the overall corpus
probability:

arg max
∏

(wj ,wk)∈D

p(wk |wj)

p(wk |wj) =
eck ·vj∑
i∈V eci ·vj

arg max
∑

(wj ,wk)∈D

log p(wk |wj) =
∑

(wj ,wk)∈D

(log eck ·vj−log
∑
ci∈V

eci ·vj)

Unsupervised Language Learning: Representation Learning for NLP

Semantics with dense vectors

Skip-gram with negative sampling

Problem with softmax: expensive to compute the denominator for the
whole vocabulary

p(wk |wj) =
eck ·vj∑
i∈V eci ·vj

Approximate the denominator: negative sampling

I At training time, walk through the corpus

I for each target word and positive context

I sample k noise samples or negative samples, i.e. other words

Unsupervised Language Learning: Representation Learning for NLP

Semantics with dense vectors

Skip-gram with negative sampling

I Objective in training:

I Make the word like the context words
lemon, a [tablespoon of apricot preserves or] jam.

c1 c2 w c3 c4

I And not like the k negative examples

[cement idle dear coaxial apricot attendant whence forever puddle]

n1 n2 n3 n4 w n5 n6 n7 n8

Unsupervised Language Learning: Representation Learning for NLP

Semantics with dense vectors

Visualising skip-gram as a network
Dan%Jurafsky

Visualizing'W'and'C'as'a'network'for'doing'
error'backprop

Input layer Projection layer Output layer

wt wt+1

1-hot input vector

1⨉d1⨉|V|

embedding for wt
probabilities of
context words

C d ⨉ |V|

x1
x2

xj

x|V|

y1
y2

yk

y|V|

W
|V|⨉d

1⨉|V|
27

Slide credit: Dan Jurafsky

Unsupervised Language Learning: Representation Learning for NLP

Semantics with dense vectors

One hot vectors

I A vector of length |V|
I 1 for the target word and 0 for other words
I So if “bear” is vocabulary word 5
I The one-hot vector is [0,0,0,0,1,0,0,0,0.........0]

Dan%Jurafsky

One<hot'vectors

• A%vector%of%length%|V|%
• 1%for%the%target%word%and%0%for%other%words
• So%if%“popsicle”%is%vocabulary%word%5
• The%one<hot'vector'is
• [0,0,0,0,1,0,0,0,0…….0]

28

0 0 0 0 0 … 0 0 0 0 1 0 0 0 0 0 … 0 0 0 0

w0 wj w|V|w1

Unsupervised Language Learning: Representation Learning for NLP

Semantics with dense vectors

Visualising skip-gram as a network
Dan%Jurafsky

Visualizing'W'and'C'as'a'network'for'doing'
error'backprop

Input layer Projection layer Output layer

wt wt+1

1-hot input vector

1⨉d1⨉|V|

embedding for wt
probabilities of
context words

C d ⨉ |V|

x1
x2

xj

x|V|

y1
y2

yk

y|V|

W
|V|⨉d

1⨉|V|
27

Slide credit: Dan Jurafsky

Unsupervised Language Learning: Representation Learning for NLP

Semantics with dense vectors

Properties of embeddings

They capture similarity
COLLOBERT, WESTON, BOTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

FRANCE JESUS XBOX REDDISH SCRATCHED MEGABITS
454 1973 6909 11724 29869 87025

AUSTRIA GOD AMIGA GREENISH NAILED OCTETS
BELGIUM SATI PLAYSTATION BLUISH SMASHED MB/S
GERMANY CHRIST MSX PINKISH PUNCHED BIT/S
ITALY SATAN IPOD PURPLISH POPPED BAUD
GREECE KALI SEGA BROWNISH CRIMPED CARATS
SWEDEN INDRA PSNUMBER GREYISH SCRAPED KBIT/S
NORWAY VISHNU HD GRAYISH SCREWED MEGAHERTZ
EUROPE ANANDA DREAMCAST WHITISH SECTIONED MEGAPIXELS
HUNGARY PARVATI GEFORCE SILVERY SLASHED GBIT/S

SWITZERLAND GRACE CAPCOM YELLOWISH RIPPED AMPERES

Table 7: Word embeddings in the word lookup table of the language model neural network LM1
trained with a dictionary of size 100,000. For each column the queried word is followed
by its index in the dictionary (higher means more rare) and its 10 nearest neighbors (using
the Euclidean metric, which was chosen arbitrarily).

and semantic properties of the neighbors are clearly related to those of the query word. These
results are far more satisfactory than those reported in Table 7 for embeddings obtained using purely
supervised training of the benchmark NLP tasks.

4.5 Semi-supervised Benchmark Results

Semi-supervised learning has been the object of much attention during the last few years (see
Chapelle et al., 2006). Previous semi-supervised approaches for NLP can be roughly categorized as
follows:

• Ad-hoc approaches such as Rosenfeld and Feldman (2007) for relation extraction.

• Self-training approaches, such as Ueffing et al. (2007) for machine translation, and McClosky
et al. (2006) for parsing. These methods augment the labeled training set with examples from
the unlabeled data set using the labels predicted by the model itself. Transductive approaches,
such as Joachims (1999) for text classification can be viewed as a refined form of self-training.

• Parameter sharing approaches such as Ando and Zhang (2005); Suzuki and Isozaki (2008).
Ando and Zhang propose a multi-task approach where they jointly train models sharing cer-
tain parameters. They train POS and NER models together with a language model (trained on
15 million words) consisting of predicting words given the surrounding tokens. Suzuki and
Isozaki embed a generative model (Hidden Markov Model) inside a CRF for POS, Chunking
and NER. The generative model is trained on one billion words. These approaches should
be seen as a linear counterpart of our work. Using multilayer models vastly expands the
parameter sharing opportunities (see Section 5).

Our approach simply consists of initializing the word lookup tables of the supervised networks
with the embeddings computed by the language models. Supervised training is then performed as
in Section 3.5. In particular the supervised training stage is free to modify the lookup tables. This
sequential approach is computationally convenient because it separates the lengthy training of the

2514

Slide credit: Ronan Collobert

Unsupervised Language Learning: Representation Learning for NLP

Semantics with dense vectors

Properties of embeddings
They capture analogy

Analogy task: a is to b as c is to d
The system is given words a,b, c, and it needs to find d .

“apple” is to “apples” as “car”‘ is to ?
“man” is to “woman” as “king” is to ?

Solution: capture analogy via vector offsets

a− b ≈ c − d

man − woman ≈ king − queen

dw = argmax
d ′

w∈V
cos(a− b, c − d ′)

Unsupervised Language Learning: Representation Learning for NLP

Semantics with dense vectors

Properties of embeddings
They capture analogy

Analogy task: a is to b as c is to d
The system is given words a,b, c, and it needs to find d .

“apple” is to “apples” as “car”‘ is to ?
“man” is to “woman” as “king” is to ?

Solution: capture analogy via vector offsets

a− b ≈ c − d

man − woman ≈ king − queen

dw = argmax
d ′

w∈V
cos(a− b, c − d ′)

Unsupervised Language Learning: Representation Learning for NLP

Semantics with dense vectors

Properties of embeddings

Capture analogy via vector offsets

man − woman ≈ king − queen

Figure 2: Left panel shows vector offsets for three word
pairs illustrating the gender relation. Right panel shows
a different projection, and the singular/plural relation for
two words. In high-dimensional space, multiple relations
can be embedded for a single word.

provided. We have explored several related meth-
ods and found that the proposed method performs
well for both syntactic and semantic relations. We
note that this measure is qualitatively similar to rela-
tional similarity model of (Turney, 2012), which pre-
dicts similarity between members of the word pairs
(xb, xd), (xc, xd) and dis-similarity for (xa, xd).

6 Experimental Results

To evaluate the vector offset method, we used
vectors generated by the RNN toolkit of Mikolov
(2012). Vectors of dimensionality 80, 320, and 640
were generated, along with a composite of several
systems, with total dimensionality 1600. The sys-
tems were trained with 320M words of Broadcast
News data as described in (Mikolov et al., 2011a),
and had an 82k vocabulary. Table 2 shows results
for both RNNLM and LSA vectors on the syntactic
task. LSA was trained on the same data as the RNN.
We see that the RNN vectors capture significantly
more syntactic regularity than the LSA vectors, and
do remarkably well in an absolute sense, answering
more than one in three questions correctly. 2

In Table 3 we compare the RNN vectors with
those based on the methods of Collobert and We-
ston (2008) and Mnih and Hinton (2009), as imple-
mented by (Turian et al., 2010) and available online
3 Since different words are present in these datasets,
we computed the intersection of the vocabularies of
the RNN vectors and the new vectors, and restricted
the test set and word vectors to those. This resulted
in a 36k word vocabulary, and a test set with 6632

2Guessing gets a small fraction of a percent.
3http://metaoptimize.com/projects/wordreprs/

Method Adjectives Nouns Verbs All
LSA-80 9.2 11.1 17.4 12.8
LSA-320 11.3 18.1 20.7 16.5
LSA-640 9.6 10.1 13.8 11.3
RNN-80 9.3 5.2 30.4 16.2
RNN-320 18.2 19.0 45.0 28.5
RNN-640 21.0 25.2 54.8 34.7
RNN-1600 23.9 29.2 62.2 39.6

Table 2: Results for identifying syntactic regularities for
different word representations. Percent correct.

Method Adjectives Nouns Verbs All
RNN-80 10.1 8.1 30.4 19.0
CW-50 1.1 2.4 8.1 4.5
CW-100 1.3 4.1 8.6 5.0
HLBL-50 4.4 5.4 23.1 13.0
HLBL-100 7.6 13.2 30.2 18.7

Table 3: Comparison of RNN vectors with Turian’s Col-
lobert and Weston based vectors and the Hierarchical
Log-Bilinear model of Mnih and Hinton. Percent correct.

questions. Turian’s Collobert and Weston based vec-
tors do poorly on this task, whereas the Hierarchical
Log-Bilinear Model vectors of (Mnih and Hinton,
2009) do essentially as well as the RNN vectors.
These representations were trained on 37M words
of data and this may indicate a greater robustness of
the HLBL method.

We conducted similar experiments with the se-
mantic test set. For each target word pair in a rela-
tion category, the model measures its relational sim-
ilarity to each of the prototypical word pairs, and
then uses the average as the final score. The results
are evaluated using the two standard metrics defined
in the task, Spearman’s rank correlation coefficient
� and MaxDiff accuracy. In both cases, larger val-
ues are better. To compare to previous systems, we
report the average over all 69 relations in the test set.

From Table 4, we see that as with the syntac-
tic regularity study, the RNN-based representations
perform best. In this case, however, Turian’s CW
vectors are comparable in performance to the HLBL
vectors. With the RNN vectors, the performance im-
proves as the number of dimensions increases. Sur-
prisingly, we found that even though the RNN vec-

749

Mikolov et al. 2013. Linguistic Regularities in Continuous Space
Word Representations

Unsupervised Language Learning: Representation Learning for NLP

Semantics with dense vectors

Properties of embeddings
They capture a range of semantic relationsTable 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skip-
gram model trained on 783M words with 300 dimensionality).

Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker

Miami - Florida Baltimore: Maryland Dallas: Texas Kona: Hawaii
Einstein - scientist Messi: midfielder Mozart: violinist Picasso: painter
Sarkozy - France Berlusconi: Italy Merkel: Germany Koizumi: Japan

copper - Cu zinc: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack

Microsoft - Windows Google: Android IBM: Linux Apple: iPhone
Microsoft - Ballmer Google: Yahoo IBM: McNealy Apple: Jobs

Japan - sushi Germany: bratwurst France: tapas USA: pizza

assumes exact match, the results in Table 8 would score only about 60%). We believe that word
vectors trained on even larger data sets with larger dimensionality will perform significantly better,
and will enable the development of new innovative applications. Another way to improve accuracy is
to provide more than one example of the relationship. By using ten examples instead of one to form
the relationship vector (we average the individual vectors together), we have observed improvement
of accuracy of our best models by about 10% absolutely on the semantic-syntactic test.

It is also possible to apply the vector operations to solve different tasks. For example, we have
observed good accuracy for selecting out-of-the-list words, by computing average vector for a list of
words, and finding the most distant word vector. This is a popular type of problems in certain human
intelligence tests. Clearly, there is still a lot of discoveries to be made using these techniques.

6 Conclusion

In this paper we studied the quality of vector representations of words derived by various models on
a collection of syntactic and semantic language tasks. We observed that it is possible to train high
quality word vectors using very simple model architectures, compared to the popular neural network
models (both feedforward and recurrent). Because of the much lower computational complexity, it
is possible to compute very accurate high dimensional word vectors from a much larger data set.
Using the DistBelief distributed framework, it should be possible to train the CBOW and Skip-gram
models even on corpora with one trillion words, for basically unlimited size of the vocabulary. That
is several orders of magnitude larger than the best previously published results for similar models.

An interesting task where the word vectors have recently been shown to significantly outperform the
previous state of the art is the SemEval-2012 Task 2 [11]. The publicly available RNN vectors were
used together with other techniques to achieve over 50% increase in Spearman’s rank correlation
over the previous best result [31]. The neural network based word vectors were previously applied
to many other NLP tasks, for example sentiment analysis [12] and paraphrase detection [28]. It can
be expected that these applications can benefit from the model architectures described in this paper.

Our ongoing work shows that the word vectors can be successfully applied to automatic extension
of facts in Knowledge Bases, and also for verification of correctness of existing facts. Results
from machine translation experiments also look very promising. In the future, it would be also
interesting to compare our techniques to Latent Relational Analysis [30] and others. We believe that
our comprehensive test set will help the research community to improve the existing techniques for
estimating the word vectors. We also expect that high quality word vectors will become an important
building block for future NLP applications.

10

Mikolov et al. 2013. Efficient Estimation of Word Representations in
Vector Space

Unsupervised Language Learning: Representation Learning for NLP

Semantics with dense vectors

Word embeddings in practice

Word2vec is often used for pretraining in other tasks.

I It will help your models start from an informed position
I Requires only plain text - which we have a lot of
I Is very fast and easy to use
I Already pretrained vectors also available (trained on 100B

words)

However, for best performance it is important to continue
training, fine-tuning the embeddings for a specific task.

Unsupervised Language Learning: Representation Learning for NLP

Semantics with dense vectors

Count-based models vs. skip-gram word embeddings

Baroni et. al. 2014. Don’t count, predict! A systematic comparison of
context-counting vs. context-predicting semantic vectors.

I Comparison of count-based and neural word vectors on 5 types
of tasks and 14 different datasets:

1. Semantic relatedness
2. Synonym detection
3. Concept categorization
4. Selectional preferences
5. Analogy recovery

Unsupervised Language Learning: Representation Learning for NLP

Semantics with dense vectors

Count-based models vs. skip-gram word embeddingsCount-based vs neural

Some of these conclusions are challenged by:
Levy et. al. 2015. Improving Distributional Similarity with Lessons Learned from Word Embeddings.Some of these findings were later disputed by Levy et. al. 2015. Improving

Distributional Similarity with Lessons Learned from Word Embeddings

Unsupervised Language Learning: Representation Learning for NLP

Compositional semantics

Outline.

Word clustering (finishing off)

Semantics with dense vectors

Compositional semantics

Compositional distributional semantics

Semantic composition in recurrent neural networks

Unsupervised Language Learning: Representation Learning for NLP

Compositional semantics

Compositional semantics

I Principle of Compositionality: meaning of each whole
phrase derivable from meaning of its parts.

I Sentence structure conveys some meaning
I Deep grammars: model semantics alongside syntax, one

semantic composition rule per syntax rule

Unsupervised Language Learning: Representation Learning for NLP

Compositional semantics

Compositional semantics alongside syntax

Unsupervised Language Learning: Representation Learning for NLP

Compositional semantics

Semantic composition is non-trivial

I Similar syntactic structures may have different meanings:
it barks
it rains; it snows – pleonastic pronouns

I Different syntactic structures may have the same meaning:
Kim seems to sleep.
It seems that Kim sleeps.

I Not all phrases are interpreted compositionally, e.g. idioms:
red tape
kick the bucket

but they can be interpreted compositionally too, so we can
not simply block them.

Unsupervised Language Learning: Representation Learning for NLP

Compositional semantics

Semantic composition is non-trivial

I Elliptical constructions where additional meaning arises
through composition, e.g. logical metonymy:

fast programmer
fast plane

I Meaning transfer and additional connotations that arise
through composition, e.g. metaphor

I cant buy this story.
This sum will buy you a ride on the train.

I Recursion

Unsupervised Language Learning: Representation Learning for NLP

Compositional semantics

Recursion

Unsupervised Language Learning: Representation Learning for NLP

Compositional distributional semantics

Outline.

Word clustering (finishing off)

Semantics with dense vectors

Compositional semantics

Compositional distributional semantics

Semantic composition in recurrent neural networks

Unsupervised Language Learning: Representation Learning for NLP

Compositional distributional semantics

Compositional distributional semantics

Can distributional semantics be extended to account for the
meaning of phrases and sentences?

I Language can have an infinite number of sentences, given
a limited vocabulary

I So we can not learn vectors for all phrases and sentences
I and need to do composition in a distributional space

Unsupervised Language Learning: Representation Learning for NLP

Compositional distributional semantics

1. Vector mixture models

Mitchell and Lapata, 2010.
Composition in
Distributional Models of
Semantics

Models:

I Additive

I Multiplicative

Unsupervised Language Learning: Representation Learning for NLP

Compositional distributional semantics

Additive and multiplicative models

I correlate with human similarity judgments about
adjective-noun, noun-noun, verb-noun and noun-verb pairs

I but... commutative, hence do not account for word order
John hit the ball = The ball hit John!

I more suitable for modelling content words, would not port
well to function words:
e.g. some dogs; lice and dogs; lice on dogs

Unsupervised Language Learning: Representation Learning for NLP

Compositional distributional semantics

2. Lexical function models

Distinguish between:

I words whose meaning is
directly determined by their
distributional behaviour, e.g.
nouns

I words that act as functions
transforming the distributional
profile of other words, e.g.,
verbs, adjectives and
prepositions

Unsupervised Language Learning: Representation Learning for NLP

Compositional distributional semantics

Lexical function models
Baroni and Zamparelli, 2010. Nouns are vectors, adjectives are matrices:
Representing adjective-noun constructions in semantic space

Adjectives as lexical functions

old dog = old(dog)

I Adjectives are parameter matrices (Aold , Afurry , etc.).

I Nouns are vectors (house, dog, etc.).

I Composition is simply old dog = Aold × dog.

Unsupervised Language Learning: Representation Learning for NLP

Compositional distributional semantics

Learning adjective matrices

1. Obtain a distributional vector nj for each noun nj in the lexicon.

2. Collect adjective noun pairs (ai ,nj) from the corpus.

3. Obtain a distributional vector pij of each pair (ai ,nj) from the
same corpus using a conventional DSM.

4. The set of tuples {(nj ,pij)}j represents a dataset D(ai) for the
adjective ai .

5. Learn matrix Ai from D(ai) using linear regression.

Minimize the squared error loss:

L(Ai) =
∑

j∈D(ai)

‖pij − Ainj‖2

Unsupervised Language Learning: Representation Learning for NLP

Compositional distributional semantics

Polysemy in lexical function models

Generally:

I use single representation for all senses

I assume that ambiguity can be handled as long as contextual
information is available

Exceptions:

I Kartsaklis and Sadrzadeh (2013): homonymy poses problems
and is better handled with prior disambiguation

I Gutierrez et al (2016): literal and metaphorical senses better
handled by separate models

I However, this is still an open research question.

Unsupervised Language Learning: Representation Learning for NLP

Semantic composition in recurrent neural networks

Outline.

Word clustering (finishing off)

Semantics with dense vectors

Compositional semantics

Compositional distributional semantics

Semantic composition in recurrent neural networks

Unsupervised Language Learning: Representation Learning for NLP

Semantic composition in recurrent neural networks

Semantic composition in recurrent neural networks

An alternative is to perform semantic composition in recurrent
neural networks (RNNs)

I Take word vectors as input
I Train phrase representations in a supervised setting, i.e. in

a particular task
I Possible tasks: sentiment analysis; natural language

inference; paraphrasing; machine translation etc.
I But any sequence labelling task would produce

compositional representations when using RNNs.

Unsupervised Language Learning: Representation Learning for NLP

Semantic composition in recurrent neural networks

Recurrent Neural Networks

Natural Language Processing: Part II Overview of Natural Language Processing (L90): ACS Lecture 9

Neural networks in pictures

Recurrent Neural Networks

http://colah.github.io/posts/
2015-08-Understanding-LSTMs/

Slide credit: Ann Copestake

Unsupervised Language Learning: Representation Learning for NLP

Semantic composition in recurrent neural networks

Compositional representations in RNNs

I widely used in NLP today
I task-specific representations, i.e. not general purpose (as

the ones learnt in an unsupervised way)
I oblivious of syntax

Unsupervised Language Learning: Representation Learning for NLP

Semantic composition in recurrent neural networks

Acknowledgement

Today’s lecture is partly based on materials of Dan Jurafsky
and Marek Rei.

	Word clustering (finishing off)
	Semantics with dense vectors
	Compositional semantics
	Compositional distributional semantics
	Semantic composition in recurrent neural networks

